مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

آنالیز حساسیت و بهینه‌سازی نرخ براده برداری و کیفیت سطح در فرزکاری کامپوزیت پایه آلومینیومی با ذرات تقویت‌کننده Sic

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه صنعتی اراک، دانشکده مهندسی مکانیک
چکیده
امروزه به علت نیاز روزافزون صنایع مختلف نظامی، هوافضا، خودروسازی و... به مواد با نسبت استحکام به وزن بالا، استفاده از مواد کامپوزیت پایه فلزی، به‌خصوص کامپوزیت‌های پایه آلومینیومی به‌صورت چشمگیری افزایش یافته است. ماشین‌کاری جهت نیل به دقت ابعادی بالا جزء جدایی‌ناپذیر فرآیند تولید محصولات ساخته‌شده با کامپوزیت‌های پایه آلومینیومی می‌باشد. به دلیل وجود ماده تقویت‌کننده همچون کاربید سیلیسیوم و سایر ذرات ساینده با سختی بالا، ماشین‌کاری این دسته از مواد همواره با چالش‌های فراوانی روبه‌رو می‌گردد. لذا مطالعه پارامترهای مؤثر بر ماشین‌کاری کامپوزیت‌های پایه آلومینیومی امری ضروری است. در این مطالعه به اثر سرعت دوران اسپیندل، سرعت پیشروی، عمق برش و درصد ذرات تقویت‌کننده با استفاده از روش‌های آزمایش تجربی و آماری پرداخته شده است و پاسخ‌های زبری سطح و نرخ براده برداری مورد بررسی دقیق قرار گرفته است. در این مقاله با بهره گیری از یک مطالعه روشمند شامل مدلسازی آماری به روش سطح پاسخ و استخراج معادلات رگرسیون، روش تحلیل حساسیت آماری سوبل و بهینه سازی با استفاده از الگوریتم درینگر، رفتار متغبرهای ورودی بر روی باسخ های خروجی به صورت کمی و کیفی مورد مطالعه قرار گرفته است. مطابق با نتایج به‌دست‌آمده سرعت دوران اسپیندل بیشترین تأثیر را بر روی زبری سطح را دارد. همچنین پیشروی 33%، سرعت دوران اسپیندل 28%، عمق برش 26% و درصد ذرات تقویت‌کننده 13% بر روی نرخ براده برداری تأثیرگذار هستند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Sensitivity analysis and optimization of material removal rate and surface quality in aluminum matrix composite

نویسندگان English

Vahid Tahmasbi
Mohammad Hafez Baghi
Sepehr Aeinehbandy
Amin Sousanabadi Farahani
Department Of Mechanical Engineering Arak University Of Technology
چکیده English

Today, various military, aerospace, automotive, etc. industries need materials with a high strength-to-weight ratio. The use of metal-based composite materials, especially aluminum-based composites, has increased greatly. Machining is needed to achieve high dimensional accuracy in products made with aluminum-based composites. Due to the presence of reinforcing material such as silicon carbide, machining of this type of material is difficult. Therefore, it is important to study the parameters affecting the machining of aluminum-based composites. In this study, the effect of spindle speed, feed rate, depth of cut and percentage of reinforcing particles were discussed using experimental and statistical test methods. The responses of surface roughness and material removal rate were investigated. The behavior of the input parameters on the responses of the process has been carefully investigated quantitatively and qualitatively. Answers have also been optimized. According to the obtained results, the spindle speed has the greatest effect on the surface roughness. Also, feed rate 33%, spindle speed 28%, depth of cut 26% and the percentage of reinforcing particles 13% have an effect on the chipping rate.

کلیدواژه‌ها English

milling
Aluminium Matrix Composite
Sensitivity Analysys
Material Removal Rate
Surface Roghness
S. Barnes and I. Pashby, "Machining of aluminium based metal matrix composites," Applied Composite Materials, vol. 2, pp. 31-42, 1995.
[2] S. Durante, G. Rutelli, and F. Rabezzana, "Aluminum-based MMC machining with diamond-coated cutting tools," Surface and Coatings Technology, vol. 94, pp. 632-640, 1997.
[3] A. Asgari and M. Sedighi, "Investigation on the optimal machining of Mg-based composites considering surface roughness, tool life, cutting forces, and productivity," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, p. 09544062221128693, 2022.
[4] T. Rajmohan, K. Palanikumar, and S. Prakash, "Grey-fuzzy algorithm to optimise machining parameters in drilling of hybrid metal matrix composites," Composites Part B: Engineering, vol. 50, pp. 297-308, 2013.
[5] E. Kılıckap, O. Cakır, M. Aksoy, and A. Inan, "Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite," Journal of Materials Processing Technology, vol. 164, pp. 862-867, 2005.
[6] A. Chabbi, M. A. Yallese, I. Meddour, M. Nouioua, T. Mabrouki, and F. Girardin, "Predictive modeling and multi-response optimization of technological parameters in turning of Polyoxymethylene polymer (POM C) using RSM and desirability function," Measurement, vol. 95, pp. 99-115, 2017.
[7] M. S. Lou, J. C. Chen, and C. M. Li, "Surface roughness prediction technique for CNC end-milling," Journal of industrial technology, vol. 15, no. 1, pp. 1-6, 1998.
[8] A. Safarabady, V. Tahmasbi, A. sousanabadi farahani, and m. zolfaghari, "Electrical discharge machining of metal matrix composite AZ91 magnesium alloy and investigation and optimization of the effect of input parameters on material removal rate and workpiece surface roughness," Iranian Journal of Manufacturing Engineering, vol. 9, no. 6, pp. 59-69, 2022.
[9] L. Abhang and M. Hameedullah, "Determination of optimum parameters for multi-performance characteristics in turning by using grey relational analysis," The International Journal of Advanced Manufacturing Technology, vol. 63, pp. 13-24, 2012.
[10] G. Kibria, B. Doloi, and B. Bhattacharyya, "Experimental investigation and multi-objective optimization of Nd: YAG laser micro-turning process of alumina ceramic using orthogonal array and grey relational analysis," Optics & Laser Technology, vol. 48, pp. 16-27, 2013.
[11] B. Goel, S. Singh, and R. V. Sarepaka, "Optimizing single point diamond turning for mono-crystalline germanium using grey relational analysis," Materials and Manufacturing Processes, vol. 30, no. 8, pp. 1018-1025, 2015.
[12] U. A. Dabade, "Multi-objective process optimization to improve surface integrity on turned surface of Al/SiCp metal matrix composites using grey relational analysis," Procedia CIRP, vol. 7, pp. 299-304, 2013.
[13] N. S. K. Reddy, S. Kwang-Sup, and M. Yang, "Experimental study of surface integrity during end milling of Al/SiC particulate metal–matrix composites," Journal of materials processing technology, vol. 201, no. 1-3, pp. 574-579, 2008.
[14] Y. Xiong, W. Wang, R. Jiang, and K. Lin, "Analytical model of workpiece temperature in end milling in-situ TiB2/7050Al metal matrix composites," International Journal of Mechanical Sciences, vol. 149, pp. 285-297, 2018.
[15] K. Jayakumar, "Study of cutting force and surface roughness in Ball nose end milling of vacuum hot pressed A356 alloy/SiCp metal matrix composite," Materials Today: Proceedings, vol. 5, no. 2, pp. 6526-6533, 2018.
[16] S. K. Shihab, J. Gattmah, and H. M. Kadhim, "Experimental investigation of surface integrity and multi-objective optimization of end milling for hybrid Al7075 matrix composites," Silicon, vol. 13, no. 5, pp. 1403-1419, 2021.
[17] M. Seeman, G. Ganesan, R. Karthikeyan, and A. Velayudham, "Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach," The International Journal of Advanced Manufacturing Technology, vol. 48, pp. 613-624, 2010.
[18] B. Rajeswari and K. Amirthagadeswaran, "Experimental investigation of machinability characteristics and multi-response optimization of end milling in aluminium composites using RSM based grey relational analysis," Measurement, vol. 105, pp. 78-86, 2017.
[19] G. E. Box and N. R. Draper, Empirical model-building and response surfaces. John Wiley & Sons, 1987.
[20] T. Ozben, E. Kilickap, and O. Cakır, "Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC," Journal of materials processing technology, vol. 198, no. 1-3, pp. 220-225, 2008.
[21] M. Korayem, Z. Rastegar, and M. Taheri, "Sensitivity analysis of nano-contact mechanics models in manipulation of biological cell," Nanoscience and Nanotechnology, vol. 2, no. 3, pp. 49-56, 2012.
[22] G. Boothroyd, Fundamentals of metal machining and machine tools. Crc Press, 1988.
[23] ر. محمدرضا, اصول ماشین‌کاری و ابزارشناسی (no. 0). دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، مرکز نشر, 1397.