1. Zahavi, E., V. Torbilo, and S. Press, Fatigue design: life expectancy of machine parts. 1996, Florida: CRC press.
2. Brinksmeier, E., et al., Residual stresses—measurement and causes in machining processes. CIRP Annals-Manufacturing Technology, 1982. 31(2): p. 491-510.
3. Macherauch, E. and K. Kloss, Proceedings of the International Conference on residual Stresses. Garmisch-Partenkirchen, FRG, 1986: p. 167-174.
4. Lu, J., Handbook of measurement of residual stresses. 1996: Fairmont Press.
5. Pharr, G. and W. Oliver, Measurement of thin film mechanical properties using nanoindentation. Mrs Bulletin, 1992. 17(07): p. 28-33.
6. Stone, D., et al., An investigation of hardness and adhesion of sputter-deposited aluminum on silicon by utilizing a continuous indentation test. Journal of Materials Research, 1988. 3(01): p. 141-147.
7. Tsui, T., W. Oliver, and G. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. Journal of Materials Research, 1996. 11(03): p. 752-759.
8. Suresh, S. and A. Giannakopoulos, A new method for estimating residual stresses by instrumented sharp indentation. Acta Materialia, 1998. 46(16): p. 5755-5767.
9. Carlsson, S. and P.-L. Larsson, On the determination of residual stress and strain fields by sharp indentation testing.: Part II: Experimental investigation. Acta Materialia, 2001. 49(12): p. 2193-2203.
10. Lee, Y.-H. and D. Kwon, Measurement of residual-stress effect by nanoindentation on elastically strained (100) W. Scripta Materialia, 2003. 49(5): p. 459-465.
11. Lee, Y.-H. and D. Kwon, Estimation of biaxial surface stress by instrumented indentation with sharp indenters. Acta Materialia, 2004. 52(6): p. 1555-1563.
12. Tiwari, A.K., et al., Investigation on micro-residual stress distribution near hole using nanoindentation: Effect of drilling speed. Measurement and Control, 2019. 52(9-10): p. 1252-1263.
13. Greco, A., E. Sgambitterra, and F. Furgiuele, A new methodology for measuring residual stress using a modified Berkovich nano-indenter. International Journal of Mechanical Sciences, 2021. 207: p. 106662.
14. Swadener, J., B. Taljat, and G. Pharr, Measurement of residual stress by load and depth sensing indentation with spherical indenters. Journal of Materials Research, 2001. 16(07): p. 2091-2102.
15. Lee, Y., et al., Using the instrumented indentation technique for stress characterization of friction stir-welded API X80 steel. Philosophical Magazine, 2006. 86(33-35): p. 5497-5504.
16. Xu, Z.-H. and X. Li, Estimation of residual stresses from elastic recovery of nanoindentation. Philosophical Magazine, 2006. 86(19): p. 2835-2846.
17. Rasti, A., M.H. Sadeghi, and S. Sabbaghi Farshi, An analytical study on residual stresses in drilling of hardened steel. The International Journal of Advanced Manufacturing Technology, 2018. 99(9-12): p. 2389-2405.
18. Davim, J.P., Machining of hard materials. 2011: Springer Science & Business Media.
19. Akcan, S., et al., Formation of white layers in steels by machining and their characteristics. Metallurgical and Materials Transactions A, 2002. 33(4): p. 1245-1254.
20. Rasti, A., M.H. Sadeghi, and S. Sabbaghi Farshi, An investigation into the effect of surface integrity on the fatigue failure of AISI 4340 steel in different drilling strategies. Engineering Failure Analysis, 2019. 95: p. 66-81.
21. Rasti, A., et al., Study of microhardness variations in hole making processes on 4340 steel. Modares Mechanical Engineering, 2017. 17(1): p. 423-430.
22. Saadatbakhsh, M.H., et al., Compare and study of hole quality characteristics in helical milling and conventional drilling. Modares Mechanical Engineering, 2015. 14(16): p. 332-338.