مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی رفتار تغییر شکل کششی گرم و مشخصه های شکست فولاد زنگ نزن 410 تولید شده به روش فورج شعاعی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه حکیم سبزواری
2 دانشگاه فردوسی مشهد
چکیده
در پژوهش حاضر، رفتار کششی گرم و مورفولوژی شکست فولاد 410 در محدوده دمایی C° 1100-950 و نرخ های کرنش s-1 05/0 و s-1 5/0 مورد بررسی قرار گرفت. نتایج نشان داد که تنش سیلان فولاد مورد مطالعه با افزایش دما کاهش یافتن که تایید کننده کاهش استحکام فولاد در برابر تغییر شکل بود. در نرخ کرنش s-1 05/0 با افزایش دما کرنش بیشینه به طور محسوس کاهش یافت در حالی که در نرخ کرنش s-1 5/0 به دلیل رقابت پدیده های متالوژیکی مانند کارسختی و کارنرمی (بازیابی دینامیکی و تبلور مجدد دینامیکی) رخ داده در طول فرایند بعد از یک کاهش اولیه یک روند افزایشی در کرنش پیک با افزایش دما مشاهده شد. نتایج سطح شکست نشان داد که در دمای C° 950 مکانیزم شکست ترد سهم بالایی در هر دو نرخ کرنش را داشت و مورفولوژی سطح شکست نرم (افزایش دیمپل ها و کاهش صفحات کلیواژ) با افزایش دما غالب بود. در نرخ کرنش s-1 05/0 ابعاد حفره­ها و ترک­های تشکیل شده به مراتب بزرگ­تر از ترک­های ایجاد شده در نرخ کرنش s-1 5/0 بودند که نشان دهنده از هم گسیختگی بالا و کاهش تغییرات طول تا شکست نمونه های تغییرشکل یافته در نرخ کرنش پایین بود که با نتایج نمودارهای تنش-کرنش مطابقت داشت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Study on hot tensile deformation and fractography of 410 martensitic stainless steel produced by radial forging process

نویسندگان English

Hamidreza Ezatpour 1
Gholamreza Ebrahimi 2
Javad Mohammadpour 1
1 Department of Engineering Sciences, Hakim Sabzevari University, Sabzevar, Iran
2 Department of Materials and Metallurgical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده English

The aim of the current research was to investigate the hot tensile behavior and fracture morphology of 410 steel in the temperature range of 950-1100°C and two strain rates of 0.05 s-1 and 0.5 s-1. The results showed that the peak stress and yield stress decreased with increasing temperature, which confirmed the decrease of strength against deformation with increasing process temperature. In strain rate of 0.05 s-1 with increasing temperature, the peak strain decreased continuously, while in strain rate of 0.5 s-1 was observed an increment trend after initial decrease due to competition between work hardening and softening mechanism such as dynamic recovery and dynamic recrystallization. The fracture morphology results showed that they were in good agreement with the mechanical results when at 950 °C the brittle fracture mechanism had a high contribution and the soft fracture surface morphology (increasing dimples and decreasing cleavage planes) was dominant with increasing process temperature. At strain rate of 0.05 s-1, the size of the voids and cracks formed during process was much larger than the cracks created at strain rate of 0.5 s-1, which indicated considerable tearing and decrease in fracture strain (elongation) of the samples in during hot tensile testing at low strain rate.

کلیدواژه‌ها English

410 martensitic stainless steel
Hot tensile deformation
Mechanical properties
Fracture morphology
[1] Premium Alloys 17-4 Stainless Steel, Retrieved 2019-11-26.
[2] Dossett Jon L, Totten George E, Heat treating of irons and steels. ASM International, 2015; 4: 382–396. ISBN 978-1-62708-168-9.
[3] Momeni A, Dehghani K, Heidari M, Vaseghi M, Modeling the flow curve of AISI 410 martensitic stainless steel, Materials Engineering and Performance, 2012; 21: 2238.
[4] Ebrahimi GR, Keshmiri H, Mazinani M, Maldar A, Haghshenas M, Multi-stage thermomechanical behavior of AISI 410 martensitic steel, Materials Science and Engineering A, 2013; 559: 520.
[5] Momeni A, Dehghani K, Prediction of Dynamic Recrystallization Kinetics and Grain Size for 410 Martensitic Stainless Steel during Hot Deformation, Metals and Materials International, 2010; 16: 843~849
[6] Ghadar S, Momeni A, Tolaminejad B, Soltanalinezhad M, A comparative study on the hot deformation behavior of 410 stainless and K100 tool steels, Materials Science and Engineering: A, 2019; 760: 394-406.
[7] Shang X, Cui Z, Fu MW, A ductile fracture model considering stress state and Zener Hollomon parameter for hot deformation of metallic materials, International Journal of Mechanic Science, 2018; 144: 800.
[8] Xiao Z, Huang Y, Liu H, Wang S, Hot Tensile and Fracture Behavior of 35CrMo Steel at
Elevated Temperature and Strain Rate, Metals, 2016; 6: 210.
[9] Wen DX, Wang JK, Wang K, Xiong YB, Huang L, Zheng ZZ, Li JJ, Hot tensile deformation and fracture behaviors of a typical ultrahigh strength steel, Vacuum, 2019; 169: 108863.
[10] Zhang Y, Guo B, Li Q, Li X, Jian J, Jin Y, Ao J, Damage and Cracking Prediction of AISI 410 Martensitic Stainless Steel at Elevated Temperatures, Steel Research international, 2021; 2100030.
[11] Vinoth Kumar M, Balasubramanian V, Gourav Rao A, Hot tensile properties and strain hardening behaviour of Super 304HCu stainless steel, Journal of Materials Research and Technology, 2017; 6: 116-122.
[12] Huang Y-C, Lin YC, Deng J, Liu G, Chen M-S, Hot tensile deformation behaviors and constitutive model of 42CrMo steel, Materials and Design, 2014; 53: 349-356.
[13] Pandey C, Saini N, Mahapatra MM, Kumar P, Study of the fracture surface morphology of impact and tensile tested cast and forged (C&F) Grade 91 steel at room temperature for different heat treatment regimes, Engineering Failure Analysis, 2017; 71,: 131-147.
[14] Facai R, Chen F, Chen J, Tang X, Hot deformation behavior and processing maps of AISI 420 martensitic stainless steel, Journal of Manufacturing Processes, 2018; 31: 640-649
[15] Qi, RS, Jin M, Guo BF, Liu XG, Chen Lei, Hot-Deformation Behavior and Hot-Processing Maps of AISI 410 Martensitic Stainless Steel, High Temperature Materials and Processes, 2016; 35: 929-940.
[16] Ren F-c, Chen J, Chen F, Constitutive modeling of hot deformation behavior of X20Cr13 martensitic stainless steel with strain effect, Transactions of Nonferrous Metals Society of China, 2014; 24: 1407-1413
[17] Momeni A, Dehghani K, Prediction of dynamic recrystallization kinetics and grain size for 410 martensitic stainless steel during hot deformation, Metals and Materials International, 2010; 16: 843-849
[18] Momeni A, Abbasi SM, Shokuhfar A, Hot compression behavior of as-cast precipitation-hardening stainless steel, Journal of Iron and Steel Research, International, 2007; 14: 66-70.
[19] Tonizzo Q, Maziere M, Perlade A, Gourgues-Lorenzon A-F, Effect of austenite stability on the fracture micromechanisms and ductile-to-brittle transition in a medium-Mn, ultra-fine-grained steel for automotive applications, Journal of Materials Science, 2020; 55: 9245–9257.