مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

رفتار مکانیکی ساختار گرادیانی سلول های آگزیتکی ساخته شده به روش ساخت افزایشی مورد استفاده در کاشتنی مفصل ران

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده فنی مهندسی دانشگاه تربیت مدرس
چکیده
در بخش اول این مطالعه به بررسی خواص مکانیکی سلول آگزیتک (با نسبت پواسون منفی) با ساختار یکنواخت با هدف طراحی کاشتنی استخوان فمور انسان پرداخته شده است. از سلول های آگزیتک به منظور افزایش سطح تماس کاشتنی و استخوان تحت بارهای کششی استفاده شده است. مدول الاستیک ساختار یکنواخت آگزیتک با روش های عددی، تحلیلی و تجربی در جهت y به دست آمد. در روش تجربی نمونه ها به روش ساخت افزایشی پرینت شدند و خواص الاستیک نمونه های پرینت شده با استفاده از آزمون فشار به دست آمدند. مقایسه مدول الاستیک شبیه سازی تحلیلی و عددی با آزمون های تجربی در جهت y نشان داد که انطباق خوبی بین نتایج وجود دارد. در بخش دوم از ساختار گرادیانی به منظور کاهش سپر تنش (Stress Shielding) در سطح تماس کاشتنی و استخوان و افزایش کارایی کاشت کاشتنی استفاده شده است. در ساختار گرادیانی مدول الاستیک در سطوح تماس با استخوان نزدیک مدول الاستیک استخوان در نظر گرفته شده است و به تدریج در لایه های بعدی افزایش می یابد. مدول الاستیک ساختار گرادیانی به دو روش عددی و تحلیلی محاسبه شد. در روش عددی مدول الاستیک از نرم افزار آباکوس و کدنویسی در متلب به دست آمد. میزان اختلاف مدول الاستیک در این دو روش 4/8 درصد به دست آمد، که نشان می دهد انطباق قابل قبولی بین نتایج وجود دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Mechanical Behavior of Additively Manufactured Graded Auxetic Structure in Hip Implant

نویسندگان English

Sahel Mohammadi Ghalehney
Mohammad Hossein Sadeghi
Tarbiat Modares Faculty of Engineering
چکیده English

In the first part of this study, the mechanical properties of the uniform auxetic unit cell (negative Poisson’s ratio) have been investigated for application in the hip implant. We used auxetic cells to increase the contact surface between implant and bone under tensile loads. The elastic modulus of the uniform auxetic structure have been obtained by numerical, analytical and experimental methods in y direction. Comparing the elastic modulus in y direction of the analytical and numerical simulation with experimental tests showed there are a good agreement between the results.
In the second part, the gradient structure has been used in order to reduce the stress shielding on the contact surface of the bone and implant, increase the efficiency of implant replacement and reduce infection. In the gradient structure, the elastic modulus in the contact surfaces is considered close to the elastic modulus of the bone, and gradually increases in the next layers. The elastic modulus of the gradient structure was calculated by two numerical and analytical methods. In the numerical method, the elastic modulus was obtained from Abaqus software and coding on MATLAB. The difference of the elastic modulus in these two methods was 4.8%, which shows that there is an acceptable agreement between the results.

کلیدواژه‌ها English

Additive Manufacturing
Numerical solution
Gradient Structure
Hip Implant
[1] Zadpoor AA and Malda J. Additive Manufacturing of Biomaterials , Tissues , and Organs, Annals of Biomedical Engineering, vol. 45, no. 1, pp. 1–11, 2017.
[2] Imani SM, Rabiee SM, Moazami Goudarzi A, Dardel M. Investigation of the Mechanical Properties of the Porous Scaffolds Used in Bone Tissue Engineering by Means of Micromechanical Modeling. Modares Mechanical Engineering, vol. 17, pp. 397‐408, 2017. [Persian]
[3] Fahad M, Mujeeb M. & Khan M.A, Effect of Process Parameters on the Compressive and Impact Strength of 3D Printed Parts. Iran Journal Science Technology Trans Mech Eng; vol. 47, pp. 257–265, 2023.
[4] Ehterami A, Saraeian P, Etemadi Haghighi S, Azami M. Preparation and Characterization of Barium Titanate Scaffold for Bone Tissue Engineering. Modares Mechanical Engineering, vol. 17, pp. 417‐422, 2018. [Persian].
[5] S. Singh S and S. Ramakrishna S. Biomedical Applications of Additive Manufacturing: Present and future. Current Opinion in Biomedical Engineering, vol. 2, pp. 105–115, 2017.
[6] Kolken HMA, Janbaz S, Leeflang SMA, Lietaert K, Weinans HH, and Zadpoor AA. Rationally designed meta-implants: A Combination of Auxetic and Conventional Meta-Biomaterials. Materials Horizons, vol. 5, no. 1, pp. 28–35, 2018 .
[7] Hedayati R, Ghavidelnia N, Sadighi M, and Bodaghi M. Improving the Accuracy of Analytical Relationships for Mechanical Properties of Permeable Metamaterials. Applied Sciences (Switzerland), vol. 11, no. 3, pp. 1–38, 2021.
[8] Jonge CP, Kolken HMA, and Zadpoor AA. Non-Auxetic Mechanical Metamaterials, Materials. vol. 12, no. 4, 2019 .
[9] Gharehbaghi H, Farrokhabadi A, and Noroozi Z, Introducing a New Hybrid Surface Strut-Based Lattice Structure with Enhanced Energy Absorption Capacity. Mechanics of Advanced Materials and Structures, pp. 1-10, 2023.
[10] Farrokhabadi A, Veisi H, Gharehbaghi H, Montesano J, Behravesh AH, and Hedayati SK. Investigation of the Energy Absorption Capacity of Foam-Filled 3D-Printed Glass Fiber Reinforced Thermoplastic Auxetic Honeycomb Structures. Mechanics of Advanced Materials and Structures, vol. 30, no. 4, pp. 758–769, 2023.
[11] Li D, Qin R, Xu, J. et al. Improving Mechanical Properties and Energy Absorption of Additive Manufacturing Lattice Structure by Struts. Acta Mechanical Solida Sin, 2022.
[12] Kim Y, Son K H, Lee J W. Auxetic Structures for Tissue Engineering Scaffolds and Biomedical Devices. Materials, vol.14, pp. 6821, 2021.
[13] Yao Y, Wang L, Li J, Tian S, Zhang M, Fan Y. A Novel Auxetic Structure Based Bone Screw Design: Tensile Mechanical Characterization and Pullout Fixation Strength Evaluation. Mater Design, vol.188, pp.108424, 2020.
[14] Ahn C B, Kim J H, Lee J H, Park K Y, Son K H, Lee J W, Development of Multi Layer Tubular Vascular Compliance by Exhibiting a Negative Poisson’s Ratio. International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 8, pp. 841–853, 2021.
[15] Zhang X Y, Fang G, Leeflang S, Zadpoor A A, and Zhou J. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomaterialia, vol. 84, pp. 437–452, 2019.
[16] Yingying X a, Jianhui M a, Yingjie H c, Li Zh a, Zimu Sh, Compressive Mechanical Properties of Ex-Situ Auxetic Composite-Filled Tubes. Journal of Materials Research and Technology, vol. 14, pp. 1644-1654, 2021.
[17] Kolken HMA and Zadpoor AA. Auxetic Mechanical Metamaterials. RSC Advance., vol. 7, no. 9, pp. 5111–5129, 2017.
[18] Ghavidelnia N, Bodaghi M, Hedayati R. Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study. Materials, vol. 14, pp. 993, 2021.
[19] Ghavidelnia N, Bodaghi M, and Hedayati R. Femur Auxetic Meta-Implants with Tuned Micromotion Distribution. Materials, vol. 14, no. 1, 2021.
[20] Kolken HMA et al. Mechanical Performance of Auxetic Meta-Biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, vol. 104, p. 103658, 2020.
[21] Wan H, Ohtaki H, Kotosaka S, and Hu G. A Study of Negative Poisson’s Ratios in Auxetic Honeycombs Based on a Large Deflection Model. European Journal of Mechanics - A/Solids, vol. 23, no. 1, pp. 95–106, 2004.
[22] Yang L, Harrysson O, West H, and Cormier D. Compressive Properties of Ti–6Al–4V Auxetic Mesh Structures Made by Electron Beam Melting. Acta Materialia, vol. 60, no. 8, pp. 3370–3379, 2012.
[23] Tu J, Makarian K, Alvarez N J, Palmese G R. Formulation of a Model Resin System for Benchmarking Processing-Property Relationships in High-Performance Photo 3D Printing Applications. Materials (Basel), vol. 13, pp. 4109, 2020.
[24] Yang L, Harrysson O, Cormier D, West H, Gong H, Stucker B. Additive Manufacturing of Metal Cellular Structures: Design and Fabrication. The journal of the Minerals, Metals & Materials Society, vol. 67, no. 3, 2015.
[25] Rfati I, Abouei mehrizi A. Evaluation of Young's Modulus and Poisson's Ratios of Diamond Porous Structure for Use in Orthopedic Implant by Finite Element Method. Modares Mechanical Engineering, vol. 19, pp. 1135-1143, 2018. [Persian].
[26] Gharehbaghi H, Sadeghzadeg M, Farrokhabadi A. Introducing the New Lattice Structure Based on the Representative Element Double Octagonal Bipyramid. Aerospace Science and Technology; vol. 121, 1073-1083, 2022.
[27] Risse L, Woodcock S, Brüggemann JP, Kullmer G, and Richard HA. Stiffness Optimization and Reliable Design of a Hip Implant by Using the Potential of Additive Manufacturing Processes. Bio Medical Engineering, pp. 21-23, 2022.
[28] Saadatfar M. Mechanical Properties of Functionally Graded Porous Bio materials for Application in Prosthesis Replacement Using Analytical and Numerical Solution. Modares Mechanical Engineering, vol. 19, pp. 2717-2727, 2019. [Persian].