مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تاثیر یخ‌زدگی بر ایرودینامیک و ایروآکوستیک ایرفویل

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه ملایر
چکیده
یخ‌زدگی مساله‌ای متداول در توربین‌های بادی، دمنده‌ها و وسایل نقلیه پروازی می‌باشد. این پدیده تاثیر زیادی بر کاهش عملکرد ایرودینامیکی، افزایش آلودگی صوتی و اعمال بار اضافی بر روی سازه دارد. در این مقاله تاثیر یخ‌زدگی بر عملکرد ایرودینامیکی و ایروآکوستیکی ایرفویل ناکا-0012 مورد مطالعه قرار گرفته ‌است. برای حل ایرودینامیکی از معادلات گذرا و سه‌بعدی ناویر-استوکس استفاده شده است. محاسبه صوت با استفاده از معادلات فاکس-ویلیام و هاوکینز صورت گرفته است. شبیه‌سازی گردابه‌ها با استفاده از روش LES و مدل مقیاس زیر شبکه WALE انجام شده است. ابتدا تمامی روش‌های محاسباتی با استفاده از داده‌های تجربی اعتبارسنجی شده‌اند. سپس اثر یخ‌زدگی بر عملکرد ایرفویل مطالعه شده است. گردابه‌های جریان مورد مطالعه قرار گرفته‌اند و مکانیسم‌های تولید صوت منطبق بر این گردابه‌ها شناسایی شده‌اند. نتایج نشان می‌دهد که یخ‌زدگی باعث کاهش نیروی برآ به مقدار 7/9 درصد و افزایش 8/3 برابری نیروی پسا می‌شود. در بازه‌ حداکثر حساسیت شنوایی انسان (یک تا پنج کیلوهرتز) مقدار متوسط افزایش صوت نیز در حدود 9 دسی‌بل می‌باشد که از نظر آلودگی صوتی مقدار قابل توجهی است. افزایش صوت ناشی‌از یخ‌زدگی می‌تواند برای شناسایی و مقابله سریع‌‌تر با این پدیده و کاهش خطرات ناشی از آن مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Effect of Icing on Aerodynamics and Aeroacoustics of an Airfoil

نویسندگان English

Hamidreza Kaviani
Ehsan Bashtalam
Department of Mechanical Engineering, Technical and Engineering Faculty, Malayer University
چکیده English

Icing is a common issue in blowers, wind turbines and flying vehicles. This phenomenon has a great impact on reducing aerodynamic performance, increasing noise pollution and imposing extra load on the structure. In this article, the effect of icing on the aerodynamic and aeroacoustic performance of the Naka-0012 airfoil has been studied. Transient and three-dimensional Navier-Stokes equations have been used for aerodynamic prediction. Sound wave is calculated using Fox-Williams and Hawkins equations. Simulation of eddies has been done using LES method and WALE subgrid scale model. First, all calculation methods have been validated using experimental data. Then the effect of icing on airfoil performance has been studied. Flow vortices have been studied and sound production mechanisms corresponding to these vortices have been identified. The results show that icing reduces the lift force by 9.7% and increases the drag force by 3.8 times. In the range of maximum human hearing sensitivity (one to five kHz), the average amount of sound increase is around 9 dB, which is a significant amount in terms of noise pollution. The increase in sound caused by icing can be used to identify and deal with this phenomenon faster and reduce its risks.

کلیدواژه‌ها English

Aeroacoustics
Airfoil
Icing
LES
WALE
[1] V. Lehtomäki and I. W. Task, "Wind energy in cold climates available technologies-report," Task 19, Tech. Rep., IEA 2018. 2018. Available online: https://community …2018.
[2] J.-H. Jeong, J. Choi, J.-Y. Jeong, S.-H. Woo, S.-W. Kim, D. Lee, et al., "A novel statistical-dynamical method for a seasonal forecast of particular matter in South Korea," Science of The Total Environment, vol. 848, p. 157699, 2022.
[3] J. W. Oswald, A. Enache, R. Hann, G. Glabeke, and T. Lutz, "UAV Icing: Experimental and Numerical Study of Glaze Ice Performance Penalties on an RG-15 Airfoil," in AIAA SCITECH 2022 Forum, 2022.
[4] X. Yang, X. Bai, and H. Cao, "Influence analysis of rime icing on aerodynamic performance and output power of offshore floating wind turbine," Ocean Engineering, vol. 258, p. 111725, 2022.
[5] F. T. Lynch and A. Khodadoust, "Effects of ice accretions on aircraft aerodynamics," Progress in Aerospace Sciences, vol. 37, pp. 669-767, 2001.
[6] L. T. Contreras Montoya, S. Lain, and A. Ilinca, "A review on the estimation of power loss due to icing in wind turbines," Energies, vol. 15, p. 1083, 2022.
[7] F. Martini, L. T. Contreras Montoya, and A. Ilinca, "Review of wind turbine icing modelling approaches," Energies, vol. 14, p. 5207, 2021.
[8] S. Tavoularis and U. Karnik, "Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence," Journal of Fluid Mechanics, vol. 204, pp. 457-478, 1989.
[9] C. L. Rumsey, "Exploring a Method for Improving Turbulent Separated-Flow Predictions with Kappa-Omega Models," 2009.
[10] H. Li, Y. Zhang, and H. Chen, "Numerical Simulation of Iced Wing Using Separating Shear Layer Fixed Turbulence Models," AIAA Journal, vol. 59, pp. 3667-3681, 2021.
[11] M. Costes and F. Moens, "Advanced numerical prediction of iced airfoil aerodynamics," Aerospace Science and Technology, vol. 91, pp. 186-207, 2019.
[12] Ö. Akbal, E. Ayan, and B. Zafer, "A CASE STUDY OF AIRFOIL AEROACOUSTICS CHARACTERISTICS IN-FLIGHT ICING CONDITIONS," presented at the ANKARA INTERNATIONAL AEROSPACE CONFERENCE, ANKARA 2021.
[13] M. Xiao, Y. Zhang, and F. Zhou, "Numerical study of iced airfoils with horn features using large-eddy simulation," Journal of Aircraft, vol. 56, pp. 94-107, 2019.
[14] M. Xiao, Y. Zhang, and F. Zhou, "Enhanced Prediction of Three-dimensional Finite Iced Wing Separated Flow Near Stall," arXiv preprint arXiv:2204.07811, 2022.
[15] J. F. Williams and D. L. Hawkings, "Sound generation by turbulence and surfaces in arbitrary motion," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 264, pp. 321-342, 1969.
[16] P. Sagaut, Large eddy simulation for incompressible flows: an introduction: Springer Science & Business Media, 2006.
[17] F. Nicoud and F. Ducros, "Subgrid-scale stress modelling based on the square of the velocity gradient tensor," Flow, turbulence and Combustion, vol. 62, pp. 183-200, 1999.
[18] P. Tucker, "Computation of unsteady turbomachinery flows: Part 2—LES and hybrids," Progress in Aerospace Sciences, vol. 47, pp. 546-569, 2011.
[19] L. Davidson and S. Dahlström, "Hybrid LES-RANS: An approach to make LES applicable at high Reynolds number," International journal of computational fluid dynamics, vol. 19, pp. 415-427, 2005.
[20] F. R. Menter, "Best practice: scale-resolving simulations in ANSYS CFD-Version 2.00," ANSYS Germany GmbH, vol. 1, 2015.
[21] P. G. Tucker, Unsteady computational fluid dynamics in aeronautics vol. 104: Springer Science & Business Media, 2013.
[22] I. Solís-Gallego, K. M. Argüelles Díaz, J. M. Fernández Oro, and S. Velarde-Suárez, "Wall-resolved LES modeling of a wind turbine airfoil at different angles of attack," Journal of Marine Science and Engineering, vol. 8, p. 212, 2020.
[23] H. K. Jawahar, S. S. Vemuri, and M. Azarpeyvand, "Aerodynamic noise characteristics of airfoils with morphed trailing edges," International Journal of Heat and Fluid Flow, vol. 93, p. 108892, 2022.
[24] W. R. Wolf, Airfoil aeroacoustics, les and acoustic analogy predictions: Stanford University, 2011.
[25] M. Wang, S. Moreau, G. Iaccarino, and M. Roger, "LES prediction of wall-pressure fluctuations and noise of a low-speed airfoil," International journal of aeroacoustics, vol. 8, pp. 177-197, 2009.
[26] C. L. Rumsey and T. Nishino, "Numerical study comparing RANS and LES approaches on a circulation control airfoil," International Journal of Heat and Fluid Flow, vol. 32, pp. 847-864, 2011.
[27] Z. Seifollahi Moghadam, F. Guibault, and A. Garon, "On the Evaluation of Mesh Resolution for Large-Eddy Simulation of Internal Flows Using Openfoam. Fluids 2021, 6, 24," in Selected Papers from the 15th OpenFOAM Workshop, 2021, p. 127.
[28] D. R. Chapman, "Computational aerodynamics development and outlook," AIAA journal, vol. 17, pp. 1293-1313, 1979.
[29] U. Piomelli, J. Ferziger, P. Moin, and J. Kim, "New approximate boundary conditions for large eddy simulations of wall‐bounded flows," Physics of Fluids A: Fluid Dynamics, vol. 1, pp. 1061-1068, 1989.
[30] P. G. Tucker and L. Davidson, "Zonal k–l based large eddy simulations," Computers & Fluids, vol. 33, pp. 267-287, 2004.
[31] T. F. Brooks, Pope, D. S. and Marcolini, M. A., "Airfoil self-noise and prediction " 1989.
[32] M. Bragg, "Experimental aerodynamic characteristics of an NACA 0012 airfoil with simulated glaze ice," Journal of Aircraft, vol. 25, pp. 849-854, 1988.
[33] I. H. Abbott and A. E. Von Doenhoff, Theory of wing sections: including a summary of airfoil data: Courier Corporation, 2012.
[34] J. C. Hunt, A. A. Wray, and P. Moin, "Eddies, streams, and convergence zones in turbulent flows," 1988.
[35] L. L. Pauley, P. Moin, and W. C. Reynolds, "The structure of two-dimensional separation," Journal of fluid Mechanics, vol. 220, pp. 397-411, 1990.
[36] H. Kaviani and A. Nejat, "Aeroacoustic and aerodynamic optimization of a MW class HAWT using MOPSO algorithm," Energy, vol. 140, pp. 1198-1215, 2017.
[37] S. Salim, C. Pattiaratchi, R. Tinoco, G. Coco, Y. Hetzel, S. Wijeratne, et al., "The influence of turbulent bursting on sediment resuspension under unidirectional currents," Earth Surface Dynamics, vol. 5, pp. 399-415, 2017.
[38] A. Bodavula, R. Yadav, and U. Guven, "Numerical investigation of the unsteady aerodynamics of NACA 0012 with suction surface protrusion," Aircraft Engineering and Aerospace Technology, 2019.
[39] C. Liu, Y. Li, Z. Zhou, and P. Wiśniewski, "Effect of Cascade Surface Roughness on Boundary Layer Flow Under Variable Conditions," Frontiers in Energy Research, vol. 9, 2022.
[40] Y. Zhang, Z. Zhou, K. Wang, and X. Li, "Aerodynamic characteristics of different airfoils under varied turbulence intensities at low Reynolds numbers," Applied Sciences, vol. 10, p. 1706, 2020.
[41] J. M. Turner and J. W. Kim, "Effect of spanwise domain size on direct numerical simulations of airfoil noise during flow separation and stall," Physics of Fluids, vol. 32, p. 065103, 2020.
[42] H. Kaviani and A. Nejat, "Aerodynamic noise prediction of a MW-class HAWT using shear wind profile," Journal of Wind Engineering and Industrial Aerodynamics, vol. 168, pp. 164-176, 2017.
[43] W. t.-P. A. n. m. t. IEC/TC88. 61400-11, International Electrotechnical Commission (IEC), ed.2, 2012, ed.