مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

استفاده از روش میکرومکانیک خودسازگار بهبود یافته در پیش بینی رفتار تنش-کرنش نانوکامپوزیت های الاستومری با استفاده از تئوری افزایشی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه علم و صنعت
چکیده
هدف از این تحقیق توسعه روش های میکرومکانیک کلاسیک و استفاده از آنها در ارائه مدل ساختاری نانوکامپوزیت های الاستومری با استفاده از تئوری افزایشی می باشد. برای این منظور با استفاده از مفهوم کرنش ویژه، مدل بهبود یافته خود سازگار جهت پیش بینی خواص الاستیک نانوکامپوزیت ها ارائه می شود. همچنین با استفاده از این مدل روابط مربوط به مدل ساختاری متکی بر تئوری افزایشی جهت پیش بینی رفتار تنش-کرنش نانوکامپوزیت های الاستومری ارائه می شود. در ادامه نتایج حاصل از حل مدل های تئوریک با نتایج حاصل از آزمون های تجربی و نتایج منتشر شده در متون علمی مقایسه می شود. بررسی نتایج نشان داده است مدل ساختاری توسعه یافته متکی بر روش میکرومکانیک خودسازگار بهبودیافته می تواند رفتار تنش کرنش نانوکاموزیت های الاستومری را در درصدهای بالا از نانوذرات تقویت کننده با دقت خوبی پیش بینی نماید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modified self-consistent micromechanics approach to the prediction of the stress-strain behavior of elastomeric nanocomposite using incremental theory

نویسندگان English

mohamad Karimi Dona
Bijan Mohammadi
Fathollah Taheri-Behrooz
Iran University of Science and Technology
چکیده English

In the present research, classic micromechanical methods and their application as constitutive models in conjugation with incremental theory were developed. Using the modified Eshelby model, the Eigen strain concept in polymeric composite, and a modified form of self-consistent model the elastic properties of nanocomposites were predicted. Also, the stress-strain behavior of elastomer nanocomposites was calculated and validated by the experimentally determined ones. The results showed that the new model can predict the stress-strain behavior of elastomer nanocomposite at different particle volume fractions.

کلیدواژه‌ها English

Carbon black
Micromechanics
Eshelby model
Elastomer
Nanocomposite
[1] Mullins, L. and N. Tobin, Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler‐reinforced vulcanized rubber. Journal of Applied Polymer Science, 1965. 9(9): p. 2993-3009.
[2] Bilisik, K. and M. Akter, Graphene nanoplatelets/epoxy nanocomposites: A review on functionalization, characterization techniques, properties, and applications. Journal of Reinforced Plastics and Composites, 2022. 41(3-4): p. 99-129.
[3] Clement, F., L. Bokobza, and L. Monnerie, Investigation of the Payne effect and its temperature dependence on silica-filled polydimethylsiloxane networks. Part I: Experimental results. Rubber chemistry and technology, 2005. 78(2): p. 211-231.
[4] Das, A., et al., Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Composites Science and Technology, 2012. 72(16): p. 1961-1967.
[5] Hou, B., et al., Rapid preparation of expanded graphite at low temperature. New Carbon Materials, 2020. 35(3): p. 262-268.
[6] Bergstrom, J.S. and M.C. Boyce, Mechanical behavior of particle filled elastomers. Rubber chemistry and technology, 1999. 72(4): p. 633-656.
[7] Boutaleb, S., et al., Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. International Journal of Solids and Structures, 2009. 46(7-8): p. 1716-1726.
[8] Kundalwal, S. and S. Meguid, Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. European Journal of Mechanics-A/Solids, 2017. 64: p. 69-84.
[9] Moore, J.A., et al., An efficient multiscale model of damping properties for filled elastomers with complex microstructures. Composites Part B: Engineering, 2014. 62: p. 262-270.
[10] Yang, S., et al., Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection. International Journal of Plasticity, 2013. 41: p. 124-146.
[11] Cantournet, S., M. Boyce, and A. Tsou, Micromechanics and macromechanics of carbon nanotube-enhanced elastomers. Journal of the Mechanics and Physics of Solids, 2007. 55(6): p. 1321-1339.
[12] Cantournet, S., R. Desmorat, and J. Besson, Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model. International Journal of Solids and Structures, 2009. 46(11-12): p. 2255-2264.
[13] Österlöf, R., H. Wentzel, and L. Kari, An efficient method for obtaining the hyperelastic properties of filled elastomers in finite strain applications. Polymer testing, 2015. 41: p. 44-54.
[14] Österlöf, R., et al., Constitutive modelling of the amplitude and frequency dependency of filled elastomers utilizing a modified Boundary Surface Model. International Journal of Solids and Structures, 2014. 51(19-20): p. 3431-3438.
[15] Shokrieh, M., et al., Effect of graphene nanosheets (GNS) and graphite nanoplatelets (GNP) on the mechanical properties of epoxy nanocomposites. Science of Advanced Materials, 2013. 5(3): p. 260-266.
[16] Pavlov, A.S. and P.G. Khalatur, Filler reinforcement in cross-linked elastomer nanocomposites: insights from fully atomistic molecular dynamics simulation. Soft Matter, 2016. 12(24): p. 5402-5419.
[17] Peng, B., et al., Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature nanotechnology, 2008. 3(10): p. 626.
[18] Voigt, W., Theoretical studies of the elastic behaviour of crystals. Presented at the session of the Royal Society of Science on, 1887.
[19] Reuß, A., Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1929. 9(1): p. 49-58.
[20] Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the royal society of London. Series A. Mathematical and physical sciences, 1957. 241(1226): p. 376-396.
[21] Mura, T., Micromechanics of defects in solids. 2013: Springer Science & Business Media.
[22] Mori, T. and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 1973. 21(5): p. 571-574.
[23] Benveniste, Y., A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of materials, 1987. 6(2): p. 147-157.
[24] Lu, P., Further studies on Mori–Tanaka models for thermal expansion coefficients of composites. Polymer, 2013. 54(6): p. 1691-1699.
[25] Sadeghpour, E., et al., A modified Mori–Tanaka approach incorporating filler-matrix interface failure to model graphene/polymer nanocomposites. International Journal of Mechanical Sciences, 2020. 180: p. 105699.
[26] Ghahramani, P., et al., Theoretical and experimental investigation of MWCNT dispersion effect on the elastic modulus of flexible PDMS/MWCNT nanocomposites. Nanotechnology Reviews, 2022. 11(1): p. 55-64.
[27] Zhu, F., C. Park, and G. Jin Yun, An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage. Mechanics of Advanced Materials and Structures, 2019: p. 1-13.
[28] Yun, G.J., et al., A damage plasticity constitutive model for wavy CNT nanocomposites by incremental Mori-Tanaka approach. Composite Structures, 2021. 258: p. 113178.
[29] Christensen, R. and K. Lo, Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 1979. 27(4): p. 315-330.
[30] Anoukou, K., et al., On the overall elastic moduli of polymer–clay nanocomposite materials using a self-consistent approach. Part I: Theory. Composites Science and Technology, 2011. 71(2): p. 197-205.
[31] Mansouri, M. and H. Darijani, Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. International Journal of Solids and Structures, 2014. 51(25-26): p. 4316-4326.
[32] Xiao, J., Y. Xu, and F. Zhang, Generalized self-consistent electroelastic estimation of piezoelectric nanocomposites accounting for fiber section shape under antiplane shear. Acta Mechanica, 2016. 227(5): p. 1381-1392.
[33] Xiong, Z., et al., A combined self-consistent method to estimate the effective properties of polypropylene/calcium carbonate composites. Polymers, 2018. 10(1): p. 101.
[34] Zhang, B., X. Yu, and B. Gu, A generalized self-consistent model for interfacial debonding behavior of fiber reinforced rubber matrix sealing composites. Journal of Shanghai Jiaotong University (Science), 2017. 22(3): p. 343-348.
[35] Jiang, Y. and H. Fan, A micromechanics model for predicting the stress–strain relations of filled elastomers. Computational materials science, 2013. 67: p. 104-108.
[36] Yang, H., et al., Micromechanics models of particulate filled elastomer at finite strain deformation. Composites Part B: Engineering, 2013. 45(1): p. 881-887.
[37] Karimi Dona, M.H., F. Tahri‐behrooz, and B. Mohammadi, A modified classic‐micromechanics approach to predict effective elastic properties of nanoparticles reinforced polymers. Polymer Composites, 2022. 43(4): p. 2129-2138.