[1] Mullins, L. and N. Tobin, Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler‐reinforced vulcanized rubber. Journal of Applied Polymer Science, 1965. 9(9): p. 2993-3009.
[2] Bilisik, K. and M. Akter, Graphene nanoplatelets/epoxy nanocomposites: A review on functionalization, characterization techniques, properties, and applications. Journal of Reinforced Plastics and Composites, 2022. 41(3-4): p. 99-129.
[3] Clement, F., L. Bokobza, and L. Monnerie, Investigation of the Payne effect and its temperature dependence on silica-filled polydimethylsiloxane networks. Part I: Experimental results. Rubber chemistry and technology, 2005. 78(2): p. 211-231.
[4] Das, A., et al., Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Composites Science and Technology, 2012. 72(16): p. 1961-1967.
[5] Hou, B., et al., Rapid preparation of expanded graphite at low temperature. New Carbon Materials, 2020. 35(3): p. 262-268.
[6] Bergstrom, J.S. and M.C. Boyce, Mechanical behavior of particle filled elastomers. Rubber chemistry and technology, 1999. 72(4): p. 633-656.
[7] Boutaleb, S., et al., Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. International Journal of Solids and Structures, 2009. 46(7-8): p. 1716-1726.
[8] Kundalwal, S. and S. Meguid, Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. European Journal of Mechanics-A/Solids, 2017. 64: p. 69-84.
[9] Moore, J.A., et al., An efficient multiscale model of damping properties for filled elastomers with complex microstructures. Composites Part B: Engineering, 2014. 62: p. 262-270.
[10] Yang, S., et al., Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection. International Journal of Plasticity, 2013. 41: p. 124-146.
[11] Cantournet, S., M. Boyce, and A. Tsou, Micromechanics and macromechanics of carbon nanotube-enhanced elastomers. Journal of the Mechanics and Physics of Solids, 2007. 55(6): p. 1321-1339.
[12] Cantournet, S., R. Desmorat, and J. Besson, Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model. International Journal of Solids and Structures, 2009. 46(11-12): p. 2255-2264.
[13] Österlöf, R., H. Wentzel, and L. Kari, An efficient method for obtaining the hyperelastic properties of filled elastomers in finite strain applications. Polymer testing, 2015. 41: p. 44-54.
[14] Österlöf, R., et al., Constitutive modelling of the amplitude and frequency dependency of filled elastomers utilizing a modified Boundary Surface Model. International Journal of Solids and Structures, 2014. 51(19-20): p. 3431-3438.
[15] Shokrieh, M., et al., Effect of graphene nanosheets (GNS) and graphite nanoplatelets (GNP) on the mechanical properties of epoxy nanocomposites. Science of Advanced Materials, 2013. 5(3): p. 260-266.
[16] Pavlov, A.S. and P.G. Khalatur, Filler reinforcement in cross-linked elastomer nanocomposites: insights from fully atomistic molecular dynamics simulation. Soft Matter, 2016. 12(24): p. 5402-5419.
[17] Peng, B., et al., Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature nanotechnology, 2008. 3(10): p. 626.
[18] Voigt, W., Theoretical studies of the elastic behaviour of crystals. Presented at the session of the Royal Society of Science on, 1887.
[19] Reuß, A., Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1929. 9(1): p. 49-58.
[20] Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the royal society of London. Series A. Mathematical and physical sciences, 1957. 241(1226): p. 376-396.
[21] Mura, T., Micromechanics of defects in solids. 2013: Springer Science & Business Media.
[22] Mori, T. and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 1973. 21(5): p. 571-574.
[23] Benveniste, Y., A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of materials, 1987. 6(2): p. 147-157.
[24] Lu, P., Further studies on Mori–Tanaka models for thermal expansion coefficients of composites. Polymer, 2013. 54(6): p. 1691-1699.
[25] Sadeghpour, E., et al., A modified Mori–Tanaka approach incorporating filler-matrix interface failure to model graphene/polymer nanocomposites. International Journal of Mechanical Sciences, 2020. 180: p. 105699.
[26] Ghahramani, P., et al., Theoretical and experimental investigation of MWCNT dispersion effect on the elastic modulus of flexible PDMS/MWCNT nanocomposites. Nanotechnology Reviews, 2022. 11(1): p. 55-64.
[27] Zhu, F., C. Park, and G. Jin Yun, An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage. Mechanics of Advanced Materials and Structures, 2019: p. 1-13.
[28] Yun, G.J., et al., A damage plasticity constitutive model for wavy CNT nanocomposites by incremental Mori-Tanaka approach. Composite Structures, 2021. 258: p. 113178.
[29] Christensen, R. and K. Lo, Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 1979. 27(4): p. 315-330.
[30] Anoukou, K., et al., On the overall elastic moduli of polymer–clay nanocomposite materials using a self-consistent approach. Part I: Theory. Composites Science and Technology, 2011. 71(2): p. 197-205.
[31] Mansouri, M. and H. Darijani, Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. International Journal of Solids and Structures, 2014. 51(25-26): p. 4316-4326.
[32] Xiao, J., Y. Xu, and F. Zhang, Generalized self-consistent electroelastic estimation of piezoelectric nanocomposites accounting for fiber section shape under antiplane shear. Acta Mechanica, 2016. 227(5): p. 1381-1392.
[33] Xiong, Z., et al., A combined self-consistent method to estimate the effective properties of polypropylene/calcium carbonate composites. Polymers, 2018. 10(1): p. 101.
[34] Zhang, B., X. Yu, and B. Gu, A generalized self-consistent model for interfacial debonding behavior of fiber reinforced rubber matrix sealing composites. Journal of Shanghai Jiaotong University (Science), 2017. 22(3): p. 343-348.
[35] Jiang, Y. and H. Fan, A micromechanics model for predicting the stress–strain relations of filled elastomers. Computational materials science, 2013. 67: p. 104-108.
[36] Yang, H., et al., Micromechanics models of particulate filled elastomer at finite strain deformation. Composites Part B: Engineering, 2013. 45(1): p. 881-887.
[37] Karimi Dona, M.H., F. Tahri‐behrooz, and B. Mohammadi, A modified classic‐micromechanics approach to predict effective elastic properties of nanoparticles reinforced polymers. Polymer Composites, 2022. 43(4): p. 2129-2138.