مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل حساسیت، مدلسازی و بهینه سازی رفتار نیروی برشی و سایش ابزار در فرزکاری کامپوزیت پایه آلومینیومی با درصدهای مختلف SIC

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه صنعتی اراک
2 دانشگاه اراک
چکیده
پیشرفت‌های صورت گرفته در بسیاری از زمینه‌های مهندسی مرهون دستیابی به مواد اولیه با ویژگی‌های مطلوب است. استفاده از کامپوزیت‌های زمینه فلزی به دلیل دارا بودن نسبت استحکام به وزن مناسب، مقاومت به سایش و خزش و... به‌عنوان یک جایگزین برای مواد اولیه رایج ازجمله آلیاژهای آهنی در حال رشد سریع می‌باشد. ماشین‌کاری کامپوزیت‌های پایه فلزی به دلیل وجود ذرات تقویت‌کننده بسیار ساینده در زمینه فلزی آن، کاری دشوار و همراه با مشکلات فراوان روبه‌رو است. ازاین‌رو بررسی عوامل اثرگذار بر روی این مواد امری لازم و اجتناب‌ناپذیر است. در این مطالعه سعی بر این شده است مطالعه ای روشمند به منظور بررسی تأثیر پارامترهای سرعت دوران اسپیندل، سرعت پیشروی، عمق برش و درصد ذرات تقویت‌کننده بر روی رفتار نیروی برشی و سایش ابزار با استفاده از روش‌های طراحی ازمایش، مدلسازی و روش های تحلیل حساسیت آماری صورت گیرد. تحلیل دقیق رفتارها با ارائه معادلات رگرسیون آماری و بهینه سازی به روش درینگر و تحلیل حساسیت ای - فست انجام شده است. مطابق با نتایج به‌دست‌آمده عمق برش بیشترین تأثیر را بر نیروی ماشین‌کاری را داد. همچنین سرعت برشی با 77%، نرخ پیشروی با 9% درصد و عمق برش و درصد وزنی ذرات تقویت‌کننده با 7% درصد سایر پارامترهای اثرگذار بر روی سایش ابزار در فرآیند فرزکاری این کامپوزیت هستند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Sensitivity analysis modeling and optimization of cutting Forces and stool wear in milling of aluminum matrix composite

نویسندگان English

Vahid Tahmasbi 1
Sepehr Aeinehbandy 1
Mohammad Hafez Baghi 1
Amin Sousanabadi Farahani 2
1 Arak University of Technology
2 Arak University
چکیده English

Advances in many engineering fields depend on materials with appropriate properties. The use of metal-matrix composites is rapidly growing as a suitable alternative to conventional materials due to their strength-to-weight ratio, resistance to wear and creep, etc. Machining of metal-based composites is a difficult task due to the presence of very abrasive reinforcing particles in its based metal. Therefore, it is necessary to investigate the factors affecting these materials. In this research, a methodical study has been conducted to investigate the effect of the parameters of spindle speed, feed rate, depth of cut and the percentage of reinforcing particles on the behavior of cutting force and tool wear using experimental design methods, modeling and statistical sensitivity analysis methods. . Detailed analysis of behaviors has been done by providing statistical regression equations and optimization by Deringer's method and E-Fast-Sensitivity Analysis. According to the obtained results, the cutting depth had the greatest effect on the machining force. Also, cutting speed with 77%, advance rate with 9% percent and cutting depth and weight percent of reinforcing particles with 7% percent are other parameters affecting tool wear in the milling process of this composite.

کلیدواژه‌ها English

sensitivity analisis
milling
Al matrix composite
Tool wear
Cutting forces
[1] M. S. Lou, J. C. Chen, and C. M. Li, "Surface roughness prediction technique for CNC end-milling," Journal of industrial technology, vol. 15, no. 1, pp. 1-6, 1998.
[2] B. Zou, M. Chen, C. Huang, and Q. An, "Study on surface damages caused by turning NiCr20TiAl nickel-based alloy," Journal of materials processing technology, vol. 209, no. 17, pp. 5802-5809, 2009.
[3] N. Muthukrishnan and J. P. Davim, "Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis," Journal of materials processing technology, vol. 209, no. 1, pp. 225-232, 2009.
[4] A. Safarabady, V. Tahmasbi, A. sousanabadi farahani, and m. zolfaghari, "Electrical discharge machining of metal matrix composite AZ91 magnesium alloy and investigation and optimization of the effect of input parameters on material removal rate and workpiece surface roughness," Iranian Journal of Manufacturing Engineering, vol. 9, no. 6, pp. 59-69, 2022.
[5] J.-P. Chen, L. Gu, and G.-J. He, "A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites," Advances in Manufacturing, vol. 8, pp. 279-315, 2020.
[6] Z. Zhong and N. P. Hung, "Grinding of alumina/aluminum composites," Journal of materials processing technology, vol. 123, no. 1, pp. 13-17, 2002.
[7] C. F. Cheung, K. C. Chan, S. To, and W. B. Lee, "Effect of reinforcement in ultra-precision machining of Al6061/SiC metal matrix composites," Scripta Materialia, vol. 47, no. 2, pp. 77-82, 2002.
[8] S. Durante, G. Rutelli, and F. Rabezzana, "Aluminum-based MMC machining with diamond-coated cutting tools," Surface and Coatings Technology, vol. 94, pp. 632-640, 1997.
[9] N. Radhika, R. Subramaniam, and S. Babudeva Senapathi, "Machining parameter optimisation of an aluminium hybrid metal matrix composite by statistical modelling," Industrial Lubrication and Tribology, vol. 65, no. 6, pp. 425-435, 2013.
[10] R. Behera and G. Sutradhar, "Machinability of LM6/SiCp metal matrix composites with tungsten carbide cutting tool inserts," ARPN journal of Engineering and Applied Sciences, vol. 7, no. 2, pp. 216-221, 2012.
[11] M. J. Njuguna, D. Gao, and Z. Hao, "Tool wear, surface integrity and dimensional accuracy in turning Al2124SiCp (45% wt) metal matrix composite using CBN and PCD tools," Res J Appl Sci Eng Technol, vol. 6, no. 22, pp. 4138-4144, 2013.
[12] S.-J. Hong, H.-M. Kim, D. Huh, C. Suryanarayana, and B. S. Chun, "Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites," Materials Science and Engineering: A, vol. 347, no. 1-2, pp. 198-204, 2003.
[13] M. Alipour Sougavabar, S. A. Niknam, and B. Davoodi, "Study of tool flank wear and surface quality in milling of Al520-MMCs reinforced with SiC and Sn particles," Journal of Science and Technology of Composites, vol. 9, no. 2, pp. 1970-1975, 2022.
[14] V. Songmene and M. Balazinski, "Machining of a graphitic SiC-reinforced aluminium metal matrix composites with diamond tools," in Proceedings of the CIRP International Seminar on Progress in Innovative Manufacturing Engineering—PRIME, Sestri Levante, Italy, 2001, pp. 20-22.
[15] Y. Sahin, "Preparation and some properties of SiC particle reinforced aluminium alloy composites," Materials & design, vol. 24, no. 8, pp. 671-679, 2003.
[16] A. Srinivasan, R. Arunachalam, S. Ramesh, and J. Senthilkumaar, "Machining performance study on metal matrix composites-a response surface methodology approach," American Journal of Applied Sciences, vol. 9, no. 4, pp. 478-483, 2012.
[17] M. S. Karakaş, A. Acır, M. Übeyli, and B. Ögel, "Effect of cutting speed on tool performance in milling of B 4 C p reinforced aluminum metal matrix composites," Journal of materials processing technology, vol. 178, no. 1, pp. 241-246, 2006.
[18] D. S. C. Kishore, K. P. Rao, and A. Mahamani, "Investigation of cutting force, surface roughness and flank wear in turning of In-situ Al6061-TiC metal matrix composite," Procedia Materials Science, vol. 6, pp. 1040-1050, 2014.
[19] B. Rajeswari and K. Amirthagadeswaran, "Experimental investigation of machinability characteristics and multi-response optimization of end milling in aluminium composites using RSM based grey relational analysis," Measurement, vol. 105, pp. 78-86, 2017.
[20] G. E. Box and N. R. Draper, Empirical model-building and response surfaces. John Wiley & Sons, 1987.
[21] K. Milkey, A. Samsudin, A. Dubey, and P. Kidd, "Comparison between Taguchi Method and Response Surface Methodology (RSM) in Modelling CO 2 Laser Machining," Jordan Journal of Mechanical & Industrial Engineering, vol. 8, no. 1, 2014.
[22] T. Ozben, E. Kilickap, and O. Cakır, "Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC," Journal of materials processing technology, vol. 198, no. 1-3, pp. 220-225, 2008.
[23] A. Chabbi, M. A. Yallese, I. Meddour, M. Nouioua, T. Mabrouki, and F. Girardin, "Predictive modeling and multi-response optimization of technological parameters in turning of Polyoxymethylene polymer (POM C) using RSM and desirability function," Measurement, vol. 95, pp. 99-115, 2017.
[24] A. Taşkesen and K. Kütükde, "Experimental investigation and multi-objective analysis on drilling of boron carbide reinforced metal matrix composites using grey relational analysis," Measurement, vol. 47, pp. 321-330, 2014.
[25] A. N. Haq, P. Marimuthu, and R. Jeyapaul, "Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method," The International Journal of Advanced Manufacturing Technology, vol. 37, pp. 250-255, 2008.