مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی تاثیر الگوی هدفمند عملیات سطحی لیزری بر استحکام اتصال چسبی آلومینیوم/کامپوزیت در مود اول شکست

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مکانیک، دانشکده مهندسی، دانشگاه بیرجند
چکیده
روش مناسب برای اتصال پلیمرهای تقویت شده با الیاف کربن (CFRP) به آلومینیوم که باعث توزیع تنش یکنواخت، عملکرد خستگی مناسب‌تر و کاهش وزن می‌گردد اتصال چسبی می‌باشد. در اتصال چسبی سطح تماس چسبنده‌ها و چسب نواحی حساس برای شروع و گسترش خرابی می‌باشند. برای از بین بردن آلودگی-های سطحی چسبنده‌ها بایستی عملیات سطحی شوند. در این تحقیق تاثیر الگوی هدفمند عملیات سطحی لیزری در استحکام اتصال چسبی کامپوزیت/آلومینیوم مود اول شکست مورد بررسی قرار گرفته است. ابتدا عملیات سطحی لیزری در سرتاسر نمونه‌ها انجام شده تا بتوان پارامترهای دستگاه لیزر که با ایجاد کیفیت سطح مناسب باعث افزایش استحکام اتصال می‌گردند پیدا شوند. سپس الگوی سطح هدفمند لیزری با پارامترهای مناسب برای ایجاد سایش و تمیزکاری سطح چسبنده‌ها انجام شده است. نتایج نشان دهنده افزایش 5/15% نرخ رهایی انرژی کرنشی بحرانی مود اول برای نمونه عملیات سطحی لیزری سرتاسری نسبت به روش سنباده‌زنی می‌باشد. این در حالی است که با الگوی هدفمند عملیات سطحی لیزری نرخ رهای انرژی کرنشی بحرانی مود اول بترتیب 9/5% و 4/22% نسبت به عملیات سطحی لیزری سرتاسری و سنباده‌زنی افزایش پیدا کرده است. بررسی سطح شکست نمونه‌ها نشان دهنده به تأخیر افتادن رشد ترک در نمونه‌های الگوی هدفمند عملیات سطحی لیزری با تغییر از حالت خرابی اتصال به پارگی الیاف می‌باشد که باعث بهبود استحکام اتصال شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Investigation of the Effect of the Functional Pattern of Laser Surface Treatment on the Strength of Aluminum / Composite Adhesive Bonded Joint in the Mode I Fracture

نویسندگان English

Amir Kariman Mghaddam
Saeed Rahnama
Department of Mechanical Engineering, Faculty of Engineering, University of Birjand
چکیده English

The proper method for jointing Carbon fiber reinforced polymers (CFRP) to aluminum, which causes uniform stress distribution, more suitable fatigue performance and weight reduction, is adhesive bonded joint. In adhesive bonding, the interface of adhesives and adherent are sensitive areas for the initiation and propagation of failure. In order to eliminate surface contamination, adherents must be surface treated. In this research, the effect of the functional pattern of laser surface treatment on the strength of aluminum/composite adhesive bonded joint in the mode I fracture has been investigated. At first, laser surface treatments were performed throughout the specimen in order to find the parameters of the laser device that increase the strength of the adhesive bonding by creating a suitable surface quality. After that, the functional pattern of laser surface treatment with the appropriate parameters for ablation and cleaning of the adhesive surface is done. The results show a 15.5% increase in the critical strain energy release rate of the mode I for the all-over laser surface treatment specimen compared to the sanding method. Meanwhile, with the functional pattern of laser surface treatment, the critical strain energy release rate of the mode I has increased by 5.9% and 22.4% compared to all-over laser surface treatment and sanding, respectively. Examining the fracture surface of the specimen shows the delay in crack growth in the specimen of the functional pattern with changes from the adhesive failure to the fiber tearing, which has improved the strength of the adhesive bonding.

کلیدواژه‌ها English

Adhesive Bonded Joint
Carbon Fiber Reinforced Polymers
Functional Pattern of Laser Surface Treatment
Double-Cantilever Beam Specimen
Critical Strain Energy Release Rate of the Mode I Fracture
1- Wang S, Wang S, Li G, Cui J. Dynamic response and fracture analysis of basalt fiber reinforced plastics and aluminum alloys adhesive joints. Composite Structure. 2021; 268:114013.
2- Ammar MMA, Shirinzadeh B, Zhao P, Shi Y. An approach for damage initiation and propagation in metal and carbon fiber hybrid composites manufactured by robotic fiber placement. Composite Structure. 2021; 268:113976.
3- Kwon D-J, Kim J-H, Kim Y-J, Kim J-J, Park S-M, Kwon I-J, et al. Comparison of interfacial adhesion of hybrid materials of aluminum/carbon fiber reinforced epoxy composites with different surface roughness. Composite B Engineering. 2019; 170:11–8.
4- Anyfantis KN, Tsouvalis NG. Loading and fracture response of CFRP-to-steel adhesively bonded joints with thick adherents – Part I: Experiments. Composite Structure. 2013; 96: 850–857.
5- Liu L, Liu X, Kong L, Wang M, Hu P, Wang D. Effect of laser surface treatment on surface and bonding properties of carbon fiber reinforced composites. International Journal of Material Forming. 2020; 13 (6): 885–895.
6- American Society for Testing and Materials – ASTM. ASTM D5573: Standard practice for classifying failure modes in fiber-reinforced-plastic (FRP) Joints, ASTM 2005.
7- He J, Xian G. Debonding of CFRP-to-steel joints with CFRP delamination. Composite Structure. 2016; 153: 12–20.
8- Yao Y, Shi P, Qi S, Yan C, Chen G, Liu D, Zhu Y, Herrmann A. Manufacturing and mechanical properties of steel-CFRP hybrid composites. Journal of Composite Materials. 2020;54 (24): 3673–3682.
9- Takenaka K, Machida R, Bono T, Jinda A, Toko S, Uchida G, Setsuhara Y. Development of a non-thermal atmospheric pressure plasma-assisted technology for the direct joining of metals with dissimilar materials. Journal of Manufacturing Processes. 2022; 75: 664–669.
10- Hu Y, Zhang J, Wang L, Jiang H, Cheng F, Hu X. A simple and effective resin pre-coating treatment on grinded, acid pickled and nodized substrates for stronger adhesive bonding between Ti-6Al-4V titanium alloy and CFRP. Surface and Coatings Technology. 2022; 432:128072.
11- Wang Z, Bi X, Liu B, Xu M, Dong Z. Adhesion enhancement of PEEK/6161-T6 FLJ joints via laser surface modification. Composite B Engineering. 2021; 216: 108797.
12- Yang G, Yang T, Yuan W, Du Y, The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints, Composite B Engineering. 2019; 160: 446–456.
13- Sun C, Min J, Lin J, Wan H. Effect of Atmospheric Pressure Plasma Treatment on Adhesive Bonding of Carbon Fiber Reinforced Polymer. Polymers (Basel). 2019; 11 (1):139.
14- Voswinkel D, Kloidt D, Grydin O, Schaper M. Time efficient laser modification of steel surfaces for advanced bonding in hybrid materials. Production Engineering. 2021;15 (2): 263–270.
15- Palavra A, Coelho BN, de Hosson JTM, Lima MSF, Carvalho SM, Costa AR. Laser surface treatment for enhanced titanium to carbon fiber-reinforced polymer adhesion. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2017; 39(8): 2917–2924.
16- Sun C, Min J, Lin J, Wan H, Yang S, Wang S. The effect of laser ablation treatment on the chemistry, morphology and bonding strength of CFRP joints. International Journal of Adhesion and Adhesives. 2018;84:325–34.
17- Orifici AC, Wongwichit P, Wiwatanawongsa N. Embedded flaws for crack path control in composite laminates. Composites Part A: Applied Science and Manufacturing. 2014; 66: 218–26.
18- Maloney K, Fleck N. Toughening strategies in adhesive joints. International Journal of Solids and Structures. 2019; 158: 66–75.
19- Wagih A, Tao R, Yudhanto A, Lubineau G. Improving mode II fracture toughness of secondary bonded joints using laser patterning of adherends. Composites Part A: Applied Science and Manufacturing. 2020; (134): 105892.
20- Indeck J, Demeneghi G, Mayeur J, Williams C, Hazeli K. Influence of reversible and non-reversible fatigue on the microstructure and mechanical property evolution of 7075-T6 aluminum alloy. International Journal of Fatigue. 2020; 145: 106094.
21- De Moura MFSF, Campilho RDSG, Gonçalves JPM. Pure mode II fracture characterization of composite bonded joints. International Journal of Solids and Structures. 2009; 46(6): 1589–1595.
22- Musiari F, Moroni F, Favi C, Pirondi A. Durability assessment of laser treated aluminium bonded joints. International Journal of Adhesion and Adhesives. 2019; 93: 102323.
23- ASTM, D5528-01: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, American Standard of Testing Methods, vol. 03, no. Reapproved 2007. pp. 1–12, 2014.
24- Kariman Moghadam A, Rahnama S. Experimental investigation of the effect of different surface treatment on mode I fracture behavior of composite/aluminum adhesive joint. Journal of Science and Technology of Composites. 2023; 9(4): 2116-2127.
25-Han G, Tan B, Cheng F, Wang B, Leong YK, Hu X. CNT toughened aluminium and CFRP interface for strong adhesive bonding. Nano Materials Science. 2022; 4(3): 266–275.
26- Chen Y, Li M, Yang X, Wei K. Durability and mechanical behavior of CFRP/Al structural joints in accelerated cyclic corrosion environments. International Journal of Adhesion and Adhesives. 2020; 102: 102695.
27- Kariman Moghadam A, Rahnama S, Maleki S, Experimental and numerical investigation of crack growth in adhesive bonding of two composite plates under mode I. Modares Mechanical Engineering. 2016; 16(5): 271-280.