مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ریز ساختار و خواص مکانیکی لوله های آلیاژ منیزیم AZ91 فرآوری شده با روش جدید انبساط و اکستروژن تناوبی بهبود یافته

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه تهران
چکیده
برای در پژوهش حاضر، یک فرآیند تغییر شکل پلاستیک شدید بهبود یافته­ به نام فرآیند انبساط و اکستروژن تناوبی بهبود یافته معرفی شده است. ایده­ی فرآیند مذکور از فرآیند سنتی انبساط و اکستروژن تناوبی لوله گرفته شده و در طراحی آن تلاش شده است تا برخی از مشکلات مهم فرآیند سنتی مرتفع گردد. فرآیند انبساط و اکستروژن تناوبی بهبود یافته، قابلیت تغییرشکل پلاستیک شدید و بهبود ریزساختار و خواص مکانیکی قطعات لوله­ای شکل را دارد. همچنین، این فرآیند در تولید لوله­هایی با طول نسبتاً بلند می­تواند مورد توجه قرار گیرد. در این پژوهش، فرآیند انبساط و اکستروژن تناوبی بهبود یافته با موفقیت طی دو پاس بر روی لوله‌هایی از جنس آلیاژ منیزیم AZ91 اجرا گردید. سپس، تکامل ریزساختاری و بهبود خواص مکانیکی مورد بررسی قرار گرفت. نتایج حاکی از آن بود که ریزساختار و خواص مکانیکی، بهبود قابل‌توجهی یافته است. در این راستا، پس از انجام دو پاس فرآیند، ساختاری فوق ریزدانه تشکیل شد و مقادیر استحکام نهایی، سختی و داکتیلیتی به ترتیب 6/3، 83/1 و 8/1 برابر گردید. همچنین، مقایسه نتایج حاصل از فرآیند انبساط و اکستروژن تناوبی بهبود یافته با نتایج فرآیند سنتی انبساط و اکستروژن تناوبی لوله نشان داد که مقادیر استحکام نهایی و سختی حاصل از فرآیند بهبود یافته به مقادیر حاصل از فرآیند سنتی نزدیک بوده ولی مقدار ازدیاد طول شکست حاصل از فرآیند بهبود یافته به طرز قابل توجهی بیشتر از فرآیند سنتی می­باشد که می­توان آن را به عنوان یکی از مزایای مهم فرآیند بهبود یافته نسبت به فرآیند سنتی در نظر گرفت
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Microstructure and Mechanical Properties of AZ91 Magnesium Alloy Tubes Processed by New Method of Improved Tube Cyclic Expansion Extrusion

نویسندگان English

Milad Aali
Mohammad Eftekhari
Ghader Faraji
University of Tehran
چکیده English

In present study, an improved severe plastic deformation process named improved tube cyclic expansion extrusion process has been introduced. The idea of this process is taken from the conventional tube cyclic expansion extrusion process, and in this novel process, it is tried to solve some important problems of the conventional process. Improved tube cyclic expansion extrusion process is capable of severe plastic deforming and improving microstructure and mechanical properties of tubular components. Also, this process can be considered for producing relatively long tubes. For this purpose, the improved tube cyclic expansion extrusion process was successfully performed on AZ91 magnesium alloy tubes, up to two passes. Then, the microstructure evolution and the mechanical properties improvement were scrutinized. The results showed that the microstructure and mechanical properties were improved considerably. In this way, after two passes of this process, an ultrafine grained (UFG) microstructure was formed, and the values of ultimate strength (UTS), hardness (Hv) and ductility (EL%) became 3.6, 1.83 and 1.8 times higher, respectively. Also, the comparison of the results of the improved tube cyclic expansion extrusion process with those of the conventional tube cyclic expansion extrusion process indicated that ultimate strength and hardness of the improved process were near to those of the conventional process, but the value of elongation to failure of the improved process is considerably higher than the value of the conventional process. This can be considered as one of the important advantages of the improved process over the conventional process.

کلیدواژه‌ها English

Severe plastic deformation
Tube
AZ91 alloy
Ultra-fine grained
Mechanical properties
1. Eftekhari M, Gh. Faraji, O. Shapoorgan, M. Baniassadi. Experimental investigation of the effect of temperature in extrusion process of ECAPed nanostructured Titanium. Modares Mechanical Engineering. 2017;17(4):52-60.
2. Nikbakht S, M. Eftekhari, Gh. Faraji. Study of Microstructure and mechanical properties of pure commercial titanium via combination of Equal channel angular pressing and Extrusion. Modares Mechanical Engineering. 2017;17(1):453-61.
3. Fata A, M. Eftekhari, Gh. faraji, M. Mosavi Mashhadi. Effects of PTCAP as a severe plastic deformation method on the mechanical and microstructural properties of AZ31 magnesium alloy. Modares Mechanical Engineering. 2017;17(12):409-16.
4. Eftekhari M, A. Fata, Gh. faraji, M. Mosavi Mashhadi. Evaluation of the effects of a combined severe plastic deformation method on the hot deformation behavior of Mg-3Al-1Zn magnesium alloy. Modares Mechanical Engineering. 2018;18(5):100-7.
5. Motallebi Savarabadi M, Faraji G, Eftekhari M. Experimental Investigation of the Effects of Two-Pass Hydrostatic Cyclic Expansion Extrusion Process on the Mechanical Properties and Microstructure of Pure Copper Tubes. Modares Mechanical Engineering. 2020;20(4):933-41.
6. Eftekhari M, Faraji G, Bahrami M, Baniassadi M. Effects of hydrostatic tube cyclic extrusion compression process on the properties of 5052 aluminum alloy. Iranian Journal of Manufacturing Engineering. 2021;8(8):38-51.
7. Eftekhari M, Faraji G, Bahrami M. A Novel Severe Plastic Deformation Technique with Potential for Producing Relatively Long Ultrafine Grained Tubes. Modares Mechanical Engineering. 2021;21(10):661-72.
8. Nagasekhar A, Chakkingal U, Venugopal P. Candidature of equal channel angular pressing for processing of tubular commercial purity-titanium. Journal of Materials Processing Technology. 2006;173(1):53-60.
9. Tóth L, Arzaghi M, Fundenberger J, Beausir B, Bouaziz O, Arruffat-Massion R. Severe plastic deformation of metals by high-pressure tube twisting. Scripta Materialia. 2009;60(3):175-7.
10. Mohebbi M, Akbarzadeh A. Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Materials Science and Engineering: A. 2010;528(1):180-8.
11. Zangiabadi A, Kazeminezhad M. Development of a novel severe plastic deformation method for tubular materials: Tube Channel Pressing (TCP). Materials Science and Engineering: A. 2011;528(15):5066-72.
12. Faraji G, Mashhadi MM, Kim HS. Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes. Materials Letters. 2011;65(19):3009-12.
13. Faraji G, Babaei A, Mashhadi MM, Abrinia K. Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Materials Letters. 2012;77:82-5.
14. Wang JT, Li Z, Wang J, Langdon TG. Principles of severe plastic deformation using tube high-pressure shearing. Scripta Materialia. 2012;67(10):810-3.
15. Babaei A, Mashhadi M, Jafarzadeh H. Tube cyclic expansion-extrusion (TCEE) as a novel severe plastic deformation method for cylindrical tubes. Journal of Materials Science. 2014;49:3158-65.
16. Babaei A, Mashhadi M. Tubular pure copper grain refining by tube cyclic extrusion–compression (TCEC) as a severe plastic deformation technique. Progress in Natural Science: Materials International. 2014;24(6):623-30.
17. Jafarzadeh H, Abrinia K. Fabrication of ultra-fine grained aluminium tubes by RTES technique. Materials Characterization. 2015;102:1-8.
18. Torabzadeh H, Faraji G, Zalnezhad E. Cyclic Flaring and Sinking (CFS) as a new severe plastic deformation method for thin-walled cylindrical tubes. Transactions of the Indian Institute of Metals. 2016;69(6):1217-22.
19. Babaei A, Jafarzadeh H, Esmaeili F. Tube twist pressing (TTP) as a new severe plastic deformation method. Transactions of the Indian Institute of Metals. 2018;71(3):639-48.
20. Savarabadi MM, Faraji G, Zalnezhad E. Hydrostatic tube cyclic expansion extrusion (HTCEE) as a new severe plastic deformation method for producing long nanostructured tubes. Journal of Alloys and Compounds. 2019;785:163-8.
21. Savarabadi MM, Faraji G, Eftekhari M. Microstructure and Mechanical Properties of the Commercially Pure Copper Tube After Processing by Hydrostatic Tube Cyclic Expansion Extrusion (HTCEE). Metals and Materials International. 2021;27(6):1686-700.
22. Eftekhari M, Faraji G, Bahrami M. Processing of commercially pure copper tubes by hydrostatic tube cyclic extrusion–compression (HTCEC) as a new SPD method. Archives of Civil and Mechanical Engineering. 2021;21(3):1-12.
23. Eftekhari M, Faraji G, Bahrami M, Baniassadi M. Hydrostatic tube cyclic extrusion compression as a novel severe plastic deformation method for fabricating long nanostructured tubes. Metals and Materials International. 2022;28(7):1725-40.
24. Fata A, Eftekhari M, Faraji G, Mosavi Mashhadi M. Enhanced hot tensile ductility of Mg-3Al-1Zn alloy thin-walled tubes processed via a combined severe plastic deformation. Journal of Materials Engineering and Performance. 2018;27(5):2330-7.
25. Eftekhari M, Fata A, Faraji G, Mashhadi M. Hot tensile deformation behavior of Mg-Zn-Al magnesium alloy tubes processed by severe plastic deformation. Journal of Alloys and Compounds. 2018;742:442-53.
26. Faregh SM, Faraji G, Mashhadi MM, Eftekhari M. Texture evolution and mechanical anisotropy of an ultrafine/nano-grained pure copper tube processed via hydrostatic tube cyclic expansion extrusion. International Journal of Minerals, Metallurgy and Materials. 2022;29(12):2241-51.
27. Rassa M, Azadkoli G, Eftekhari M, Fata A, Faraji G. Effects of Equal Channel Angular Pressing (ECAP) Process with an Additional Expansion-Extrusion Stage on Microstructure and Mechanical Properties of Mg–9Al–1Zn. Journal of Advanced Materials and Processing. 2021;9(4):43-52.
28. Eftekhari M, Faraji G, Nikbakht S, Rashed R, Sharifzadeh R, Hildyard R, et al. Processing and characterization of nanostructured Grade 2 Ti processed by combination of warm isothermal ECAP and extrusion. Materials Science and Engineering: A. 2017;703:551-8.
29. Fata A, Faraji G, Mashhadi M, Tavakkoli V. Hot deformation behavior of Mg-Zn-Al alloy tube processed by severe plastic deformation. Archives of Metallurgy and Materials. 2017;62.
30. Fata A, Faraji G, Mashhadi M, Abdolvand H. Evaluation of hot tensile behavior of fine-grained Mg–9Al–1Zn alloy tube processed by severe plastic deformation. Transactions of the Indian Institute of Metals. 2017;70:1369-76.
31. Ensafi M, Faraji G, Abdolvand H. Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals. Materials Letters. 2017;197:12-6.
32. Tan J, Tan M. Dynamic continuous recrystallization characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet. Materials Science and Engineering: A. 2003;339(1-2):124-32.
33. Figueiredo RB, Langdon TG. Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP. Journal of materials science. 2010;45:4827-36.
34. Tolouie E, Jamaati R. Effect of β–Mg17Al12 phase on microstructure, texture and mechanical properties of AZ91 alloy processed by asymmetric hot rolling. Materials Science and Engineering: A. 2018;738:81-9.
35. Sarvesha R, Thirunavukkarasu G, Chiu YL, Jones IP, Jain J, Singh S. A study on the phase transformation of γ2-Al8Mn5 to LT-Al11Mn4 during solutionizing in AZ91 alloy. Journal of Alloys and Compounds. 2021;873:159836.
36. Peng L, Zeng G, Xian J, Gourlay C. Al–Mn–Fe intermetallic formation in AZ91 magnesium alloys: Effects of impurity iron. Intermetallics. 2022;142:107465.
37. Villegas-Armenta LA, Wanjara P, Gholipour J, Nakatsugawa I, Chino Y, Pekguleryuz M. Linear friction welding of an AZ91 magnesium alloy and the effect of Ca additions on the weld characteristics. Materials. 2021;14(11):3130.
38. Figueiredo RB, Terzi S, Langdon TG. Using X-ray microtomography to evaluate cavity formation in a superplastic magnesium alloy processed by equal-channel angular pressing. Acta materialia. 2010;58(17):5737-48.
39. Jäger A, Lukáč P, Gärtnerová V, Bohlen J, Kainer K. Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures. Journal of Alloys and Compounds. 2004;378(1-2):184-7.
40. Siahsarani A, Samadpour F, Mortazavi MH, Faraji G. Microstructural, mechanical and corrosion properties of AZ91 magnesium alloy processed by a severe plastic deformation method of hydrostatic cyclic expansion extrusion. Metals and Materials International. 2021;27:2933-46.
41. Jamali S, Faraji G, Abrinia K. Hydrostatic radial forward tube extrusion as a new plastic deformation method for producing seamless tubes. The International Journal of Advanced Manufacturing Technology. 2017;88(1-4):291-301.
42. Ebrahimi G, Barghamadi A, Ezatpour H, Amiri A. A novel single pass severe plastic deformation method using combination of planar twist extrusion and conventional extrusion. Journal of Manufacturing Processes. 2019;47:427-36.
43. Hosseini SA, Manesh HD. High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process. Materials & Design. 2009;30(8):2911-8.
44. Brown TL, Saldana C, Murthy TG, Mann JB, Guo Y, Allard LF, et al. A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper. Acta materialia. 2009;57(18):5491-500.
45. Abdolvand H, Faraji G, Shahbazi Karami J, Baniasadi M. Microstructure and mechanical properties of fine-grained thin-walled AZ91 tubes processed by a novel combined SPD process. Bulletin of Materials Science. 2017;40(7):1471-9.
46. Siahsarani A, Faraji G. Processing and characterization of AZ91 magnesium alloys via a novel severe plastic deformation method: Hydrostatic cyclic extrusion compression (HCEC). Transactions of Nonferrous Metals Society of China. 2021;31(5):1303-21.
47. Jamali S, Faraji G, Abrinia K. Evaluation of mechanical and metallurgical properties of AZ91 seamless tubes produced by radial-forward extrusion method. Materials Science and Engineering: A. 2016;666:176-83.
48. Faraji G, Yavari P, Aghdamifar S, Mashhadi MM. Mechanical and microstructural properties of ultra-fine grained AZ91 magnesium alloy tubes processed via multi pass Tubular Channel Angular Pressing (TCAP). Journal of Materials Science & Technology. 2014;30(2):134-8.
49. Chino Y, Kobata M, Iwasaki H, Mabuchi M. An investigation of compressive deformation behaviour for AZ91 Mg alloy containing a small volume of liquid. Acta materialia. 2003;51(11):3309-18.
50. Hansen N. Hall–Petch relation and boundary strengthening. Scripta Materialia. 2004;51(8):801-6.
51. Fattah-Alhosseini A, Imantalab O, Mazaheri Y, Keshavarz M. Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process. Materials Science and Engineering: A. 2016;650:8-14.
52. Wang Y, Ma E. Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Materialia. 2004;52(6):1699-709.