Humphrey J, Yin F. A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophysical journal. 1987;52(4):563-70.
Guccione J, McCulloch A, Waldman L. Passive material properties of intact ventricular myocardium determined from a cylindrical model. Journal of Biomechanical Engineering. 1991;113(1):42-55.
Kerckhoffs R, Bovendeerd P, Kotte J, Prinzen F, et al. Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Annals of biomedical engineering. 2003;31(5):536-47.
Dokos S, Smaill BH, Young AA, LeGrice IJ. Shear properties of passive ventricular myocardium. American Journal of Physiology-Heart and Circulatory Physiology. 2002;283(6):H2650-H9.
Usyk T, Mazhari R, McCulloch A. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. Journal of elasticity and the physical science of solids. 2000;61(1-3):143-64.
Schmid H, Nash M, Young A, Hunter P. Myocardial material parameter estimation-a comparative study for simple shear. Journal of Biomechanical Engineering. 2006;128(5):742-50.
Holzapfel GA, Ogden RW. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2009;367(1902):3445-75.
Göktepe S, Acharya S, Wong J, Kuhl E. Computational modeling of passive myocardium. International Journal for Numerical Methods in Biomedical Engineering. 2011;27(1):1-12.
Ahmad Bakir A, Al Abed A, Stevens MC, Lovell NH, et al. A multiphysics biventricular cardiac model: Simulations with a left-ventricular assist device. Frontiers in physiology. 2018;9:1259.
Rausch M, Dam A, Göktepe S, Abilez O, et al. Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomechanics and modeling in mechanobiology. 2011;10(6):799-811.
Cansız FBC, Dal H, Kaliske M. An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Computer methods in biomechanics and biomedical engineering. 2015;18(11):1160-72.
Sommer G, Schriefl AJ, Andrä M, Sacherer M, et al. Biomechanical properties and microstructure of human ventricular myocardium. Acta biomaterialia. 2015;24:172-92.
Gültekin O, Sommer G, Holzapfel GA. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Computer methods in biomechanics and biomedical engineering. 2016;19(15):1647-64.
Karlsen KS. Effects of inertia in modeling of left ventricular mechanics 2017.
Propp A, Gizzi A, Levrero-Florencio F, Ruiz-Baier R. An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion. Biomechanics and Modeling in Mechanobiology. 2020;19(2):633-59.
Tikenoğulları OZ, Costabal FS, Yao J, Marsden A, et al. How viscous is the beating heart? Insights from a computational study. Computational Mechanics. 2022:1-15.
Ahmadbakir A, Al Abed A, Lovell NH, Dokos S. Multiphysics computational modelling of the cardiac ventricles. IEEE Reviews in Biomedical Engineering. 2021.
Chan BT, Ahmad Bakir A, Al Abed A, Dokos S, et al. Impact of myocardial infarction on intraventricular vortex and flow energetics assessed using computational simulations. International journal for numerical methods in biomedical engineering. 2019;35(6):e3204.
Nordsletten D, McCormick M, Kilner P, Hunter P, et al. Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function. International Journal for Numerical Methods in Biomedical Engineering. 2011;27(7):1017-39.
Alharbi Y, Al Abed A, Bakir AA, Lovell NH, et al. Fluid structure computational model of simulating mitral valve motion in a contracting left ventricle. Computers in Biology and Medicine. 2022:105834.
Cansız B, Dal H, Kaliske M. Computational cardiology: the bidomain based modified Hill model incorporating viscous effects for cardiac defibrillation. Computational Mechanics. 2018;62(3):253-71.
Guccione J, McCulloch A. Mechanics of active contraction in cardiac muscle: Part I--Constitutive relations for fiber stress that describe deactivation. Journal of Biomechanical Engineering. 1993;115(1):72-81.
Cansız B, Dal H, Kaliske M. Computational cardiology: A modified Hill model to describe the electro-visco-elasticity of the myocardium. Computer Methods in Applied Mechanics and Engineering. 2017;315:434-66.