مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی عددی پارامترهای مختلف بر سایش ابزار در فرآیند ماشین‌کاری کامپوزیت زمینه فلزی آلومینیومی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه صنعتی اراک
2 دانشگاه اراک
چکیده
در این مقاله، اثرات تغییر چهار پارامتر مختلف ورودی مانند سرعت برشی، نرخ پیشروی، نیروی پیشروی در راستای Z و نیرو در راستای Y بر خروجی سایش ابزار در فرآیند ماشین‌کاری کامپوزیت‌ زمینه فلزی آلومینیومی بررسی شده است. به منظور بررسی عددی میزان تاثیر هر پارامتر بر خروجی فرآیند ماشین‌کاری کامپوزیت مورد نظر از فرآیند تحلیل حساسیت ای-فست استفاده شده است. روش ای-فست دارای سرعت بالایی در آنالیز کمی و کیفی داده‌ها می‌باشد. پس از انجام تحلیل حساسیت مشاهده شد که با افزایش نیروی پیشروی در راستای X میزان سایش ابزار با شیب زیادی افزایش خواهد یافت. همچنین مشاهده شد که این پارامتر (نیروی پیشروی در راستای X) با میزان 88 درصد، بیشترین تاثیر بر میزان سایش ابزار را نسبت به دیگر پارامترهای ورودی دارد. پارامترهای نرخ پیشروی، نیروی پیشروی در راستای Z و سرعت برشی به ترتیب با سهم‌های ناچیز 8درصد، 3 درصد و 1 درصد بر سایش ابزار موثر می‌باشند
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical Study on Different Parameters of Tool Wear During Machining of Aluminum Metal-Based Composites

نویسندگان English

Ahmad Homayooni 1
Hamed Faraji 2
Ali Farahani 2
Nima Rahmani 2
چکیده English

In this article, the effects of changing four different input parameters such as cutting speed, feed rate, feed force in Z direction and force in Y direction on the output of tool wear in the machining process of aluminum metal base composite have been investigated. To numerically examine the influence of each parameter on the desired composite machining process results, the E-fast sensitivity analysis procedure was used. E-fast method has a high speed in quantitative and qualitative data analysis. After conducting a sensitivity analysis, it was found that as the feed force increases in the X direction, the tool wear increases with a significant slope. It was also observed that this parameter (feed force in X direction) has the greatest impact on tool wear compared to other input parameters with an amount of 88%. The parameters of feed rate, feed force in Z direction and cutting speed are effective on tool wear with negligible rates of 8%, 3% and 1%, respectively.

کلیدواژه‌ها English

feed rate
Cutting Speed
Feed Force
Machining
Sensitivity Analysis
1- Pramod R, Kumar GV, Gouda PS, Mathew AT. A study on the Al2O3 reinforced Al7075 metal matrix composites wear behavior using artificial neural networks. Materials Today: Proceedings. 2018 Jan 1;5(5):11376-85.
2- Bhattacharyya D, Bowis ME, Gregory JT. The influence of alumina microsphere reinforcement on the mechanical behavior and weldability of a 6061 aluminum metal matrix composite. Machining of composite materials(A 95-15178 02-37), Materials Park, OH, ASM International, 1992,. 1992:49-56.
3- Lane C. The effect of different reinforcements on PCD tool life for aluminum composites. Machining of composite materials(A 95-15178 02-37), Materials Park, OH, ASM International, 1992,. 1992:17-27.
4- n, E., n, M., r, M. Milling Tool Wear Prediction by Feed Motor Current Signal using MLPs and ANFIS. AEROSPACE MECHANICS JOURNAL, 2019; 15(1): 51-62.(In Persian)
5- Lin JT, Bhattacharyya D, Kecman V. Multiple regression and neural networks analyses in composites machining. Composites Science and Technology. 2003 Feb 1;63(3-4):539-48.
6- Azmi AI, Lin RJ, Bhattacharyya D. Tool wear prediction models during end milling of glass fibre-reinforced polymer composites. The International Journal of Advanced Manufacturing Technology. 2013 Jul;67:701-18.
7- Wiciak-Pikuła M, Felusiak-Czyryca A, Twardowski P. Tool wear prediction based on artificial neural network during aluminum matrix composite milling. Sensors. 2020 Oct 13;20(20):5798.
8- Fadaei, A., Sori, M. PREDICTION OF CUTTING SPEED AND FEED EFFECTS ON RESIDUAL STRESSES IN AISI 1045 STEEL TURNING SHAFTS USING ARTIFICIAL NEURAL NETWORK. Sharif Journal of Mechanical Engineering, 2019; 35.3(1): 123-132. doi: 10.24200/j40.2018.10749.1406.‎ (In Persian)
9- Özyürek D, Kalyon A, Yıldırım M, Tuncay T, Ciftci I. Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using Artificial Neural Networks. Materials & Design. 2014 Nov 1;63:270-7.
10- Zhou G, Xu C, Ma Y, Wang XH, Feng PF, Zhang M. Prediction and control of surface roughness for the milling of Al/SiC metal matrix composites based on neural networks. Advances in Manufacturing. 2020 Dec;8:486-507.
11- Karabulut Ş. Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method. Measurement. 2015 Apr 1;66:139-49.
12- Kumar GV, Pramod R, Gouda PS, Rao CS. Artificial neural networks for the prediction of wear properties of Al6061-TiO2 composites. InIOP Conference Series: Materials Science and Engineering 2017 Aug 1 (Vol. 225, No. 1, p. 012046). IOP Publishing.
13- Faraji, H., Taheri, M. Sensitivity analysis of parameters affecting cutting speed and dimensional deviation of wire electrical discharge machining. Mechanic of Advanced and Smart Materials, 2022; 2(3): 310-327. doi: 10.52547/masm.2.3.310.(In Persian).
14- Cukier RI, Levine HB, Shuler KE. Nonlinear sensitivity analysis of multiparameter model systems. Journal of computational physics. 1978 Jan 1;26(1):1-42.
15- Saltelli A. Making best use of model evaluations to compute sensitivity indices. Computer physics communications. 2002 May 15;145(2):280-97.
16- Khorshidi K, Taheri M, Ghasemi M. Sensitivity analysis of vibrating laminated composite rec-tangular plates in interaction with inviscid fluid using efast method. Mechanics of Advanced Composite Structures. 2020 Nov 1;7(2):219-31.
17- sousanabadi farahani, A., Khalili, O., Torabi, A. Sensitivity analysis of effective parameters on bone drilling force by using E-fast method. Mechanic of Advanced and Smart Materials, 2023; 3(1): 83-94. doi: 10.52547/masm.3.1.83.‎ (In Persian)
18- Fereiduni, F., Taheri, M., Modabberifar, M. Investigation of the effect of different parameters on force in the second phase of two-dimensional nanomanipulation. Iranian Journal of Manufacturing Engineering, 2021; 8(2): 23-31. (In Persian)