1. Tanasawa, I. and J.-i. Ochiai, Expeimental study on dropwise condensatioin. Bulletin of JSME, 1973. 16(98): p. 1184-1197.
2. Fouda, A., et al., Investigation of the condensation process of moist air around horizontal pipe. International Journal of Thermal Sciences, 2015. 90: p. 38-52.
3. Yi, Q., et al., Visualization study of the influence of non-condensable gas on steam condensation heat transfer. Applied Thermal Engineering, 2016. 106: p. 13-21.
4. Talesh Bahrami, H.R., S. Zareie, and H. Saffari, A numerical analysis of dropwise condensation of nanofluid on an inclined plate. Modares Mechanical Engineering, 2017. 17(3): p. 105-114.
5. Lu, J., H. Cao, and J. Li, Condensation heat and mass transfer of steam with non-condensable gases outside a horizontal tube under free convection. International Journal of Heat and Mass Transfer, 2019. 139: p. 564-576.
6. Zhang, J.-N., et al., Influence of geometric parameters on the gas-side heat transfer and pressure drop characteristics of three-dimensional finned tube. International Journal of Heat and Mass Transfer, 2019. 133: p. 192-202.
7. Gu, Y.-h., et al., Condensation heat transfer characteristics of moist air outside a three-dimensional finned tube. International Journal of Heat and Mass Transfer, 2020. 158: p. 119983.
8. Ma, X., et al., The Investigation on Heat Transfer Characteristics of Steam Condensation in Presence of Noncondensable Gas under Natural Convection. Science and Technology of Nuclear Installations, 2021. 2021: p. 1-13.
9. Ma, X., et al., Experimental research on steam condensation in presence of non-condensable gas under high pressure. Annals of Nuclear Energy, 2021. 158: p. 108282.
10. Bonab, M.S., R. Kempers, and A. Amirfazli, Determining transient heat transfer coefficient for dropwise condensation in the presence of an air flow. International Journal of Heat and Mass Transfer, 2021. 173: p. 121278.
11. Saadat Bakhsh, M. and M. Mohammad Nouri, Slip Length of the Nanocomposite Coating in Laminar Flow. Modares Mechanical Engineering, 2019. 19(10): p. 2463-2469.
12. Schmidt, E., W. Schurig, and W. Sellschopp, Versuche über die Kondensation von Wasserdampf in Film-und Tropfenform. Technische Mechanik und Thermodynamik, 1930. 1: p. 53-63.
13. Graham, C. and P. Griffith, Drop size distributions and heat transfer in dropwise condensation. International Journal of Heat and Mass Transfer, 1973. 16(2): p. 337-346.
14. Castillo, J.E., J.A. Weibel, and S.V. Garimella, The effect of relative humidity on dropwise condensation dynamics. International Journal of Heat and Mass Transfer, 2015. 80: p. 759-766.
15. Hu, H., G. Tang, and D. Niu, Experimental investigation of convective condensation heat transfer on tube bundles with different surface wettability at large amount of noncondensable gas. Applied Thermal Engineering, 2016. 100: p. 699-707.
16. Chen, X. and M.M. Derby, Combined visualization and heat transfer measurements for steam flow condensation in hydrophilic and hydrophobic mini-gaps. Journal of Heat Transfer, 2016. 138(9): p. 091503.
17. Barati, S.B., et al., Investigation spatial distribution of droplets and the percentage of surface coverage during dropwise condensation. International Journal of Thermal Sciences, 2018. 124: p. 356-365.
18. Cheng, Y., et al., Macrotextures-induced jumping relay of condensate droplets. Applied Physics Letters, 2019. 114(9).
19. Shi, Y., G. Tang, and L. Shen, Study of coalescence-induced droplet jumping during phase-change process in the presence of noncondensable gas. International Journal of Heat and Mass Transfer, 2020. 152: p. 119506.
20. Ji, D.-Y., et al., Effective reduction of non-condensable gas effects on condensation heat transfer: Surface modification and steam jet injection. Applied Thermal Engineering, 2020. 174: p. 115264.
21. Muneeshwaran, M. and C.-C. Wang, Energy-saving of air-cooling heat exchangers operating under wet conditions with the help of superhydrophobic coating. Energy Conversion and Management, 2021. 229: p. 113740.
22. Wang, X., et al., Dropwise condensation heat transfer on nanostructured superhydrophobic surfaces with different inclinations and surface subcoolings. International Journal of Heat and Mass Transfer, 2021. 181: p. 121898.
23. Hamid Reza Talesh Bahrami, A.A., Hamid Saffari An Empirical Study on Dropwise Condensation Occurred on Surfaces Hydrophobized Using a Single-Step Electrodeposition. Amirkabir Journal of Mechanical Engineering, 2019. 52(6): p. 1397-1412.(in persian)
24. Wu, Y.-L., et al., Moist air condensation heat transfer enhancement via superhydrophobicity. International Journal of Heat and Mass Transfer, 2022. 182: p. 121973.
25. Shakeri Bonab, M., et al., Experimental Investigation of Dropwise Condensation Shedding by Shearing Airflow in Microgravity Using Different Surface Coatings. Langmuir, 2023. 39(1): p. 64-74.
26. Soroush Yousefi, M.C., Seyed Saied Bahrainian Numerical Modeling of the Effect of Inlet Temperature and Pressure on Steam Condensation and Entropy Generation in High-Pressure Separator. Amirkabir Journal of Mechanical Engineering, 2023. 54(11): p. 2601-2620.
27. Ma, X.-H., et al., Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. International Journal of Heat and Mass Transfer, 2008. 51(7-8): p. 1728-1737.
28. Hu, H., G. Tang, and D. Niu, Experimental investigation of condensation heat transfer on hybrid wettability finned tube with large amount of noncondensable gas. International Journal of Heat and Mass Transfer, 2015. 85: p. 513-523.
29. Wen, R., et al., Falling-droplet-enhanced filmwise condensation in the presence of non-condensable gas. International Journal of Heat and Mass Transfer, 2019. 140: p. 173-186.
30. Zhang, T.-Y., et al., A visualized study of enhanced steam condensation heat transfer on a honeycomb-like microporous superhydrophobic surface in the presence of a non-condensable gas. International Journal of Heat and Mass Transfer, 2020. 150: p. 119352.
31. Lee, J., S. Lee, and J. Lee, Improved humid air condensation heat transfer through promoting condensate drainage on vertically stripe patterned bi-philic surfaces. International Journal of Heat and Mass Transfer, 2020. 160: p. 120206.
32. Ami Ahmadi, H., A. Ebadi, and S.M. Hosseinalipour, Experimental Investigation of Size Effect on the Bubble-Droplet Coalescence in Water. Modares Mechanical Engineering, 2020. 20(8): p. 2075-2085.
33. Hosseinalipoor, S.M., et al., Experimental Investigation of Bubble-Droplet Coalescence Phenomenon in Water. Modares Mechanical Engineering, 2020. 20(1): p. 241-250.
34. PERSSON, C., GUM–Guide to the Expression of Uncertainty in Measurement.