1. Del Prete A, Primo T, Franchi R. Super-nickel orthogonal turning operations optimization. Procedia CIRP. 2013;8:164-9.
2. Imbrogno S, Rinaldi S, Umbrello D, Filice L, Franchi R, Del Prete A. A physically based constitutive model for predicting the surface integrity in machining of Waspaloy. Materials & Design. 2018;152:140-55.
3. del Prete A, de Vitis AA, Filice L, Caruso S, Umbrello D, editors. Tool engage investigation in nickel superalloy turning operations. Key Engineering Materials; 2012: Trans Tech Publ.
4. Kishawy H, Becze C, McIntosh D. Tool performance and attainable surface quality during the machining of aerospace alloys using self-propelled rotary tools. Journal of materials processing technology. 2004;152(3):266-71.
5. Olovsjö S, Nyborg L. Influence of microstructure on wear behaviour of uncoated WC tools in turning of Alloy 718 and Waspaloy. Wear. 2012;282:12-21.
6. Schaffer JP, Saxena A, Antolovich SD, Sanders TH, Warner SB. The science and design of engineering materials: Irwin Chicago; 1995.
7. Ding H, Shin YC. Improvement of machinability of Waspaloy via laser-assisted machining. The International Journal of Advanced Manufacturing Technology. 2013;64(1-4):475-86.
8. Karaguzel U, Olgun U, Uysal E, Budak E, Bakkal M. Increasing tool life in machining of difficult-to-cut materials using nonconventional turning processes. The International Journal of Advanced Manufacturing Technology. 2015;77(9-12):1993-2004.
9. Umbrello D, editor The effects of cutting conditions on surface integrity in machining Waspaloy. Key Engineering Materials; 2014: Trans Tech Publ.
10. Isik Y. Using internally cooled cutting tools in the machining of difficult-to-cut materials based on Waspaloy. Advances in Mechanical Engineering. 2016;8(5):1687814016647888.
11. Caruso S, Rinaldi S, Franchi R, Del Prete A, Umbrello D, editors. Experimental analysis of influence of cutting conditions on machinability of waspaloy. AIP Conference Proceedings; 2017: AIP Publishing.
12. Rinaldi S, Caruso S, Umbrello D, Filice L, Franchi R, Del Prete A. Machinability of Waspaloy under different cutting and lubri-cooling conditions. The International Journal of Advanced Manufacturing Technology. 2018;94(9-12):3703-12.
13. Przestacki D, Chwalczuk T, editors. The analysis of surface topography during turning of Waspaloy with the application of response surface method. MATEC Web of Conferences; 2017: EDP Sciences.
14. Velmurugan KV, Venkatesan K, Devendiran S, Mathew AT. Investigation of Parameters for Machining a Difficult-to-Machine Superalloy: Inconel X-750 and Waspaloy. Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018): Springer; 2019. p. 199-215.
15. [Available from: Document Prepared by Special Metals on W aspaloy Accessed from http://www.specialm etals.com/documents/W aspaloy.
16. Ezugwu E, Wang Z, Machado A. The machinability of nickel-based alloys: a review. Journal of Materials Processing Technology. 1999;86(1-3):1-16.
17. Herrmann K. Hardness testing: principles and applications: ASM international; 2011.
18. Paramasivam B. Investigation on the effects of damping over the temperature distribution on internal turning bar using Infrared fusion thermal imager analysis via SmartView software. Measurement. 2020;162:107938.
19. Polvorosa R, Suárez A, de Lacalle LL, Cerrillo I, Wretland A, Veiga F. Tool wear on nickel alloys with different coolant pressures: Comparison of Alloy 718 and Waspaloy. Journal of Manufacturing Processes. 2017;26:44-56.
20. Davies M, Cooke A, Larsen E. High bandwidth thermal microscopy of machining AISI 1045 steel. CIRP annals. 2005;54(1):63-6.
21. Jafarian F, Amirabadi H, Fattahi M. Improving surface integrity in finish machining of Inconel 718 alloy using intelligent systems. The International Journal of Advanced Manufacturing Technology. 2014;71:817-27.
22. Jawahir I, Brinksmeier E, M'saoubi R, Aspinwall D, Outeiro J, Meyer D, et al. Surface integrity in material removal processes: Recent advances. CIRP annals. 2011;60(2):603-26.