مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه تجربی تأثیر استفاده از ماده تغییر فاز دهنده جهت بهبود عایق‌بندی الکتریکی ترانسفورماتورهای توزیع برق

نوع مقاله : پژوهشی اصیل

نویسندگان
1 پژوهشکده توسعه و بهینه سازی فناوری های انرژی، پژوهشگاه صنعت نفت
2 دانشگاه آزاد اسلامی، واحد علوم و تحقیقات
3 دانشگاه تهران
چکیده
در این مقاله تأثیر استفاده از مواد تغییر فاز دهنده به‌عنوان عامل بهبود انتقال حرارت در ترانسفورماتورهای توزیع برق به‌طور تجربی بررسی شده است. برای بهبود خنک‌کاری ترانسفورماتور، روش جدیدی پیشنهاد شده که شامل افزودن پارافین در داخل ظروف آلومینیومی دربسته به روغن ترانسفورماتور است. بستر آزمون استفاده‌شده شامل یک ترانسفورماتور برق به همراه روغن ترانسفورماتور، دو گرم‌کن برقی، تنظیم‌کننده توان، دوربین حرارتی، دستگاه اندازه‌گیری استقامت دی‌الکتریک روغن و حسگرهای دما که در مکان‌های مختلف قرارگرفته‌اند، می‌باشد. نتایج تجربی نشان داد که افزودن 8 کیلوگرم پارافین به روغن ترانسفورماتور، باعث کاهش دمای ترانسفورماتور به‌ویژه در شرایط آب و هوایی گرم تابستان می‌شود و دمای میانگین روغن ترانسفورماتور را از 7/46 به 5/42 سانتی‌گراد کاهش می‌یابد. در این آزمایش مشخص شد که وقتی دمای روغن به‌طور ناگهانی و سریع طی یک ساعت افزایش یابد، افزودن پارافین به‌خوبی نمی‌تواند باعث دفع حرارت و کاهش دما شود. در انتها تأثیر افزایش مداوم و بالای دما بر عایق روغن بررسی شد. نتایج نشان داد که با به‌کارگیری پارافین، مقدار ولتاژی که روغن می‌تواند به‌عنوان عایق الکتریکی تحمل کند از 8/56 به 61 کیلوولت افزایش می‌یابد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental study of the effect of using phase change material to improve electrical insulation of power distribution transformers

نویسندگان English

Mohammad Mazidi Sharfabadi 1
Nuha Majeed Karam 2
Reza Kurd 3
1 Research Institute of Petroleum Industry
2 Islamic Azad University, Science and Research Branch
3 University of Tehran
چکیده English

In this article, the effect of using phase change materials to improve heat transfer in power distribution transformers has been investigated experimentally. To enhance the cooling of the transformer, a new method has been proposed, which involves adding paraffin inside aluminium containers that are sealed to the transformer oil. The test setup includes an electric transformer filled with transformer oil, two electrical heaters, a power regulator, a thermal camera, oil insulation measuring device, and temperature sensors placed at various locations. The experimental results demonstrated that the addition of phase change materials to the electronic transformer oil led to a decrease in the temperature of the transformer, particularly in summer weather conditions. Additionally, the mean temperature of the transformer oil was reduced from 46.7 to 42.5 degrees Celsius by adding 8 kg of paraffin. However, it was observed that when the temperature increases suddenly and rapidly within an hour, these materials are ineffective in dissipating the heat and reducing the temperature of the transformers. Additionally, the research examines the impact of continuous and high-temperature increases on the oil electrical insulation. The results revealed that using phase change materials increased the voltage that the oil could withstand as an electrical insulator from 56.8 kV to 61 kV.

کلیدواژه‌ها English

Experimental Study
Test Bench
Disturbution Transformer
Phase change material
Paraffin
Cooling
Oil Insulation
[1] Wang, S., et al. Temperature control of permanent-magnet synchronous motor using phase change material. in 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). 2015. IEEE.
[2] Biwole, P.H., P. Eclache, and F. Kuznik, Phase-change materials to improve solar panel's performance. Energy and Buildings, 2013. 62: p. 59-67.
[3] Lu, S., et al., Establishment and experimental verification of TRNSYS model for PCM floor coupled with solar water heating system. Energy and Buildings, 2017. 140: p. 245-260.
[4] Bin, X., G. Guobiao, R. Lin, and L. Zhenguo. Study on overload performance enhancement of motor based on heat storage of phase change paraffin. in 2017 20th International Conference on Electrical Machines and Systems (ICEMS). 2017. IEEE.
[5] Hasan, A., J. Sarwar, H. Alnoman, and e.S. Abdelbaqi, Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Solar Energy, 2017. 146: p. 417-429.
[6] Reddy, P.B., C. Gunasekar, A.S. Mhaske, and M.N.V. Krishna. Enhancement of thermal conductivity of PCM using filler graphite powder materials. in IOP Conference Series: Materials Science and Engineering. 2018. IOP Publishing.
[7] Saeed, R.M., J.P. Schlegel, R. Sawafta, and V. Kalra, Plate type heat exchanger for thermal energy storage and load shifting using phase change material. Energy Conversion and Management, 2019. 181: p. 120-132.
[8] Abdulrahman, R.S., F.A. Ibrahim, and S.F. Dakhil, Development of paraffin wax as phase change material based latent heat storage in heat exchanger. Applied Thermal Engineering, 2019. 150: p. 193-199.
[9] Abduladheem, A.A. and M.I. Hasan, Using of PCM as an energy storage material to improve the cooling process in electrical transformers. University of Thi-Qar Journal for Engineering Sciences, 2019. 10(2).
[10] Ayat, S., et al. The use of phase change material for the cooling of electric machine windings formed with hollow conductors. in 2019 IEEE International Electric Machines & Drives Conference (IEMDC). 2019. IEEE.
[11] Faraj, K., et al., Analysis of underfloor electrical heating system integrated with coconut oil-PCM plates. Applied Thermal Engineering, 2019. 158: p. 113778.
[12] Plytaria, M.T., E. Bellos, C. Tzivanidis, and K.A. Antonopoulos, Numerical simulation of a solar cooling system with and without phase change materials in radiant walls of a building. Energy Conversion and Management, 2019. 188: p. 40-53.
[13] Fayaz, H., et al., Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM. Renewable Energy, 2019. 143: p. 827-841.
[14] González-Peña, D., I. Alonso-deMiguel, M. Díez-Mediavilla, and C. Alonso-Tristán, Experimental analysis of a novel PV/T panel with PCM and heat pipes. Sustainability, 2020. 12(5): p. 1710.
[15] Gholamibozanjani, G. and M. Farid, Application of an active PCM storage system into a building for heating/cooling load reduction, in Thermal Energy Storage with Phase Change Materials. 2021, CRC Press. p. 331-358.
[16] Wang, Z., et al., Thermal storage performance of building envelopes for nearly-zero energy buildings during cooling season in Western China: An experimental study. Building and Environment, 2021. 194: p. 107709.
[17] Li, Z., et al., Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material. Energy, 2019. 178: p. 471-486.
[18] Oró, E., et al., Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 2012. 99: p. 513-533.
[19] Hasan, M.I. and A.A. Abduladheem, Modifying the thermal performance of electrical distribution transformers using phase change materials (paraffin wax). Heat Transfer—Asian Research, 2019. 48(6): p. 2440-2455.
[20] Kandasamy, R., X.-Q. Wang, and A.S. Mujumdar, Transient cooling of electronics using phase change material (PCM)-based heat sinks. Applied thermal engineering, 2008. 28(8-9): p. 1047-1057.
[21] Sciacovelli, A., F. Gagliardi, and V. Verda, Maximization of performance of a PCM latent heat storage system with innovative fins. Applied Energy, 2015. 137: p. 707-715.
[22] Hasan, M.I., H.O. Basher, and A.O. Shdhan, Experimental investigation of phase change materials for insulation of residential buildings. Sustainable cities and society, 2018. 36: p. 42-58.