1. Fan G, Li J, Hao H. Vibration signal denoising for structural health monitoring by residual convolutional neural networks. Measurement. 2020;157:107651.
2. Ravizza G, Ferrari R, Rizzi E, Dertimanis V. On the denoising of structural vibration response records from low-cost sensors: A critical comparison and assessment. Journal of Civil Structural Health Monitoring. 2021;11(5):1201-24.
3. Wang X, Chakraborty J, Niederleithinger E. Noise reduction for improvement of ultrasonic monitoring using coda wave interferometry on a real bridge. Journal of Nondestructive Evaluation. 2021;40(1):14.
4. Kullaa J. Robust damage detection in the time domain using Bayesian virtual sensing with noise reduction and environmental effect elimination capabilities. Journal of Sound and Vibration. 2020;473:115232.
5. Zhang Z, Ye Y, Luo B, Chen G, Wu M. Investigation of microseismic signal denoising using an improved wavelet adaptive thresholding method. Scientific Reports. 2022;12(1):22186.
6. Dastgerdi AK, Mercorelli P. Investigating the effect of noise elimination on LSTM models for financial markets prediction using Kalman Filter and Wavelet Transform. WSEAS Trans Bus Econ. 2022;19:432-41.
7. Niu P, Sun Y, Gong Z. Research on the chaotic characteristics and noise reduction prediction of information system anomalies in equipment manufacturing enterprises. Sustainability. 2021;13(9):4911.
8. Li Y-x, Wang L. A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise, minimum mean square variance criterion and least mean square adaptive filter. Defence Technology. 2020;16(3):543-54.
9. Grassberger P, Hegger R, Kantz H, Schaffrath C, Schreiber T. On noise reduction methods for chaotic data. Chaos: An Interdisciplinary Journal of Nonlinear Science. 1993;3(2):127-41.
10. Han M, Liu Y, Xi J, Guo W. Noise smoothing for nonlinear time series using wavelet soft threshold. IEEE signal processing letters. 2006;14(1):62-5.
11. Shang L-J, Shyu K-K. A method for extracting chaotic signal from noisy environment. Chaos, Solitons & Fractals. 2009;42(2):1120-5.
12. Wei G, Shu H. H∞ filtering on nonlinear stochastic systems with delay. Chaos, Solitons & Fractals. 2007;33(2):663-70.
13. Billings SA, Lee KL. A smoothing algorithm for nonlinear time series. International Journal of Bifurcation and Chaos. 2004;14(03):1037-51.
14. Schreiber T, Grassberger P. A simple noise-reduction method for real data. Physics letters A. 1991;160(5):411-8.
15. Abarbanel HDI, Gollub JP. Analysis of Observed Chaotic Data. Physics Today. 1996;49(11):86-8.
16. Farmer JD, Sidorowich JJ. Exploiting Chaos to Predict the Future and Reduce Noise. Evolution, Learning And Cognition. 1989:277.
17. Hammel SM. A noise reduction method for chaotic systems. Physics letters A. 1990;148(8-9):421-8.
18. Davies M. Noise reduction schemes for chaotic time series. Physica D: Nonlinear Phenomena. 1994;79(2-4):174-92.
19. Marteau P, Abarbanel HD. Noise reduction in chaotic time series using scaled probabilistic methods. Journal of Nonlinear Science. 1991;1:313-43.
20. Pikovsky A. Discrete-time dynamic noise filtering. Sov J Commun Technol Electron. 1986;31:81.
21. Landa P, Rozenblum M. A comparison of methods for constructing a phase space and determining the dimension of an attractor from experimental data. Sov Phys-Tech Phys. 1989;34:1229-32.
22. Kostelich EJ, Yorke JA. Noise reduction: Finding the simplest dynamical system consistent with the data. Physica D: Nonlinear Phenomena. 1990;41(2):183-96.
23. Cawley R, Hsu G-H. Local-geometric-projection method for noise reduction in chaotic maps and flows. Physical review A. 1992;46(6):3057.
24. Sauer T. A noise reduction method for signals from nonlinear systems. Physica D: Nonlinear Phenomena. 1992;58(1-4):193-201.
25. Davies M. Noise reduction by gradient descent. International Journal of Bifurcation and Chaos. 1993;3(01):113-8.
26. Robins V, Abernethy J, Rooney N, Bradley E. Topology and intelligent data analysis. Intelligent Data Analysis. 2004;8(5):505-15.
27. Robins V, Rooney N, Bradley E. Topology-based signal separation. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2004;14(2):305-16.
28. Alexander Z, Bradley E, Garland J, Meiss J. Iterated Function System Models in Data Analysis: Detection and Separation; CU-CS-1087-11. 2011.
29. Wang W-B, Zhang X-D, Chang Y, Wang X-L, Wang Z, Chen X, et al. Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating. Chinese Physics B. 2015;25(1):010202.
30. Wang M, Zhou Z, Li Z, Zeng Y. An adaptive denoising algorithm for chaotic signals based on improved empirical mode decomposition. Circuits, Systems, and Signal Processing. 2019;38:2471-88.
31. Tang G, Yan X, Wang X. Chaotic signal denoising based on adaptive smoothing multiscale morphological filtering. Complexity. 2020;2020:1-14.
32. Nichols J, Trickey S, Todd M, Virgin L. Structural health monitoring through chaotic interrogation. Meccanica. 2003;38(2):239-50.
33. Takens T. Detecting Strange Attractors in Turbulence. Lecture Notes in Math. 1981;898:336-81.
34. Kostelich EJ, Schreiber T. Noise reduction in chaotic time-series data: A survey of common methods. Physical Review E. 1993;48(3):1752.
35. Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Physical review A. 1986;33(2):1134.
36. Broomhead DS, King GP. Extracting qualitative dynamics from experimental data. Physica D: Nonlinear Phenomena. 1986;20(2-3):217-36.
37. Vautard R, Yiou P, Ghil M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena. 1992;58(1-4):95-126.
38. Karunasinghe DS, Liong S-Y. Chaotic time series prediction with a global model: Artificial neural network. Journal of Hydrology. 2006;323(1-4):92-105.
39. Han M, Zhong K, Qiu T, Han B. Interval Type-2 Fuzzy Neural Networks for Chaotic Time Series Prediction: A Concise Overview. IEEE transactions on cybernetics. 2019;49(7):2720-31.
40. Fan H, Jiang J, Zhang C, Wang X, Lai Y-C. Long-term prediction of chaotic systems with machine learning. Physical Review Research. 2020;2(1):012080.
41. Ouyang T, Huang H, He Y, Tang Z. Chaotic wind power time series prediction via switching data-driven modes. Renewable Energy. 2020;145:270-81.
42. Sun W, Chen H, Liu F, Wang Y. Point and interval prediction of crude oil futures prices based on chaos theory and multiobjective slime mold algorithm. Annals of Operations Research. 2022:1-31.
43. Burden F, Winkler D. Bayesian regularization of neural networks. Artificial neural networks: methods and applications. 2009:23-42.
44. Feng Q, Li Y. Denoising Deep Learning Network Based on Singular Spectrum Analysis—DAS Seismic Data Denoising With Multichannel SVDDCNN. IEEE Transactions on Geoscience and Remote Sensing. 2022;60:3071189.
45. Zheng Y-B, Huang T-Z, Zhao X-L, Jiang T-X, Ma T-H, Ji T-Y. Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Transactions on Geoscience and Remote Sensing. 2019;58(1):734-49.
46. Lorenz EN. Deterministic nonperiodic flow. Journal of atmospheric sciences. 1963;20(2):130-41.
47. Theiler J. Efficient algorithm for estimating the correlation dimension from a set of discrete points. Physical review A. 1987;36(9):4456.
48. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D: nonlinear phenomena. 1983;9(1-2):189-208.
49. Carrassi A, Bocquet M, Demaeyer J, Grudzien C, Raanes P, Vannitsem S. Data assimilation for chaotic dynamics. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol IV). 2022:1-42.