مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مشخصه‌یابی خوردگی داغ و رفتار TGO در پوشش سد حرارتی APS-BC و HVOF-BC

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه زنجان
چکیده
خوردگی داغ و رشد لایه اکسیدی (TGO) عوامل مخربی در پوشش‌های سد حرارتی (TBC) هستند که در شرایط کاری منجر به شکست پوشش می‌شوند. در مطالعه حاضر رفتار خوردگی داغ و تغییرات TGO برای TBC های که لایه رابط آن با روش‌های اسپری پلاسمای اتمسفر (APS) و پاشش حرارتی سوخت اکسیژن با سرعت بالا (HVOF) اعمال شدند ارزیابی شده است. هر دو نوع پوشش برای شرایط یکسان تحت آزمایش خوردگی داغ سیکلی با دمای 1100 درجه سانتی‌گراد در معرض نمک‌های مذاب Na2SO4 و V2O5 قرار داده شدند سپس ریزساختار آن‌ها با استفاده از تصاویر میکروسکوپ الکترونی (SEM) و آنالیز پراش پرتو ایکس (XRD) بررسی شده است. همچنین تغییرات ضخامت TGO در سیکل‌های مختلف با استفاده از نرم‌افزار Image J و تصاویر SEM اندازه‌گیری شده است. نتایج نشان می‌دهد با نفوذ مذاب نمک‌های خورنده و واکنش آن با لایه YSZ یک تغییر فاز از تتراگونال به مونوکلینیک برای زیرکونیا اتفاق افتاده است و همچنین با تخلیه ایتریا از ساختار پوشش، محصولات واکنشی YVO4 برای TBC ها به وجود آمده است. تحمل سیکل خوردگی داغ TBC ها و رفتار رشد TGO نشان می‌دهد پوشش‌های که لایه رابط آن‌ها با روش HVOF اعمال شده است عملکرد بهتری نسبت به روش APS نشان می‌دهند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Characterization of hot corrosion performance and TGO behavior in APS-BC and HVOF-BC thermal barrier coatings

نویسندگان English

yousef yousefi jamalabad
javad rahimi
Mohammad Rasoul Javadi Sigaroodi
Esmaeil Poursaeidi
Farzam Montakhabi
University of Zanjan
چکیده English

Hot corrosion and thermally grown oxide (TGO) formation are destructive factors in thermal barrier coatings (TBCs) that lead to coating failure under operational conditions. In the present study, the hot corrosion behavior and TGO evolution for TBCs whose Bond coat by deposited by atmospheric plasma spraying (APS) and high velocity oxygen fuel (HVOF) thermal spray methods were evaluated. Both types of coatings were subjected to cyclic hot corrosion testing at a temperature of 1100°C in the presence of molten salts of Na2SO4 and V2O5 under identical conditions. Subsequently, their microstructures were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) images. Additionally, changes in TGO thickness were measured across different cycles using Image J software and SEM images. The results indicate that TBCs deposited using the HVOF method for the bond coat exhibit better performance compared to those deposited using the APS method. The results show that a phase change from tetragonal to monoclinic has occurred for zirconia with the penetration of corrosive salt melt and its reaction with the YSZ layer, and also with the depletion of yttria from the coating structure, YVO4 reaction products have been formed for TBCs. The endurance of hot corrosion cycle of TBCs and the growth behavior of TGO show that the coatings whose interface layer is applied by the HVOF method show better performance than the APS method.

کلیدواژه‌ها English

Hot Corrosion
Thermal Barrier Coatings
Atmospheric Plasma Spray
High Velocity Oxygen Fuel Thermal Spray
Javadi Sigaroodi M, Rahimi J, Poursaeidi E, Montakhabi F. Impact of bond coat types on calcium-magnesium-alumina-silicate and hot corrosion behavior in thermal barrier coatings. Corros Sci. 2024 Feb 1;227:111742.
Liu Y, Zhang W, Wang W, Liu W, Yang T, Li K, et al. Evolution of microstructure, thermophysical and mechanical properties and wetting behavior of plasma-sprayed Yb2O3 and Y2O3 co-stabilized ZrO2 coatings during high-temperature exposure and CMAS corrosion. Surf Coatings Technol. 2023 Feb 15;477:130278.
Loghman-Estarki MR, Shoja Razavi R, Edris H, Bakhshi SR, Nejati M, Jamali H. Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings. Ceram Int. 2016 May 1;42(6):7432–9.
Poliarus O, Morgiel J, Pomorska M, Korniewa-Surmacz A, Trelka A, Maj, et al. Effect of HT Cycling in Air on Microstructure of Detonation Gun Sprayed YSZ/NiCr Coating. J Therm Spray Technol [Internet]. 2024 Jan 10 [cited 2024 Jan 28];1–12. Available from: https://link.springer.com/article/10.1007/s11666-023-01709-9
Jamali H, Mozafarinia R, Shoja-Razavi R, Ahmadi-Pidani R. Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulfate. J Eur Ceram Soc. 2014 Feb 1;34(2):485–92.
Prashar G, Vasudev H, Thakur L. A comprehensive Review on the Hot Corrosion and Erosion Performance of thermal Barrier Coatings [Internet]. Vol. 59, Protection of Metals and Physical Chemistry of Surfaces. Pleiades Publishing; 2023 [cited 2024 Jan 28]. p. 461–92. Available from: https://link.springer.com/article/10.1134/S2070205122060132
Chellaganesh D, Khan MA, Jappes JTW. Thermal barrier coatings for high temperature applications - A short review. In: Materials Today: Proceedings. Elsevier Ltd; 2021. p. 1529–34.
Qureshi IN, Shahid M, Nusair Khan A. Hot Corrosion of Yttria-Stabilized Zirconia Coating, in a Mixture of Sodium Sulfate and Vanadium Oxide at 950 °C. J Therm Spray Technol [Internet]. 2016 Feb 1 [cited 2024 Jan 28];25(3):567–79. Available from: https://link.springer.com/article/10.1007/s11666-015-0374-4
Ozgurluk Y, Doleker KM, Karaoglanli AC. Hot corrosion behavior of YSZ, Gd 2 Zr 2 O 7 and YSZ/Gd 2 Zr 2 O 7 thermal barrier coatings exposed to molten sulfate and vanadate salt. Appl Surf Sci. 2018 Apr 30;438:96–113.
Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications [Internet]. Vol. 296, Science. American Association for the Advancement of Science; 2002 [cited 2024 Jan 28]. p. 280–4. Available from: https://www.science.org/doi/10.1126/science.1068609
Shi J, Zhang T, Sun B, Wang B, Zhang X, Song L. Isothermal oxidation and TGO growth behavior of NiCoCrAlY-YSZ thermal barrier coatings on a Ni-based superalloy. J Alloys Compd. 2020 Dec 5;844:156093.
Zhu C, Javed A, Li P, Yang F, Liang GY, Xiao P. A study of the microstructure and oxidation behavior of alumina/yttria-stabilized zirconia (Al2O3/YSZ) thermal barrier coatings. Surf Coatings Technol. 2012 Nov 1;212:214–22.
Saremi M, Afrasiabi A, Kobayashi A. Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation. Surf Coatings Technol. 2008 Apr 15;202(14):3233–8.
Doleker KM, Ozgurluk Y, Kahraman Y, Karaoglanli AC. Oxidation and hot corrosion resistance of HVOF/EB-PVD thermal barrier coating system. Surf Coatings Technol. 2021 Mar 15;409:126862.
Haynes JA, Ferber MK, Porter WD. Thermal cycling behavior of plasma-sprayed thermal barrier coatings with various MCrAIX bond coats. J Therm Spray Technol [Internet]. 2000 [cited 2024 May 16];9(1):38–48. Available from: https://link.springer.com/article/10.1361/105996300770350041
Ozgurluk Y, Doleker KM, Ozkan D, Ahlatci H, Karaoglanli AC. Cyclic Hot Corrosion Failure Behaviors of EB-PVD TBC Systems in the Presence of Sulfate and Vanadate Molten Salts. Coatings 2019, Vol 9, Page 166 [Internet]. 2019 Mar 1 [cited 2024 May 16];9(3):166. Available from: https://www.mdpi.com/2079-6412/9/3/166/htm
Pakseresht AH, Javadi AH, Ghasali E, Shahbazkhan A, Shakhesi S. Evaluation of hot corrosion behavior of plasma sprayed thermal barrier coatings with graded intermediate layer and double ceramic top layer. Surf Coatings Technol. 2016 Feb 25;288:36–45.
Baskaran T, Arya SB. Hot corrosion resistance of air plasma sprayed ceramic Sm2SrAl2O7 (SSA) thermal barrier coatings in simulated gas turbine environments. Ceram Int. 2018 Oct 15;44(15):17695–708.
Ajay A, Raja VS, Sivakumar G, Joshi S V. Hot corrosion behavior of solution precursor and atmospheric plasma sprayed thermal barrier coatings. Corros Sci. 2015 Sep 1;98:271–9.
Guo H, Li D, Peng H, Cui Y, Gong S. High-temperature oxidation and hot-corrosion behaviour of EB-PVD β-NiAlDy coatings. Corros Sci. 2011 Mar 1;53(3):1050–9.
Habibi MH, Wang L, Liang J, Guo SM. An investigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4 + V2O5 salt at 1100 °C. Corros Sci. 2013 Oct 1;75:409–14.
Wang D. Improving the Hot Corrosion Resistance of Nanostructured ZrO2-7wt.%Y2O3Thermal Barrier Coatings Fabricated by Plasma Spraying. In: Journal of Physics: Conference Series [Internet]. IOP Publishing Ltd; 2021 [cited 2024 Jan 28]. p. 12118. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1732/1/012118
Habibi MH, Wang L, Liang J, Guo SM. An investigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4+V2O5 salt at 1100°C. Corros Sci. 2013 Oct 1;75:409–14.
Kaplan M, Uyaner M, Ozgurluk Y, Doleker KM, Karaoglanli AC. Evaluation of Hot Corrosion Behavior of APS and HVOF Sprayed Thermal Barrier Coatings (TBCs) Exposed to Molten Na2SO4 + V2O5 Salt at 1000 °C. In: Advanced Structured Materials [Internet]. Springer Verlag; 2019 [cited 2024 Jan 28]. p. 441–59. Available from: https://link.springer.com/chapter/10.1007/978-3-319-79005-3_28
Li M, Cheng Y, Guo L, Zhang C, Zhang Y, He S, et al. Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts. Ceram Int. 2017 Jul 1;43(10):7797–803.
Karabaş M, Bal E, Taptik Y. Hot corrosion behaviour of plasma sprayed alumina + YSZ particle composite coating. Prot Met Phys Chem Surfaces [Internet]. 2017 Sep 1 [cited 2024 Jan 28];53(5):859–63. Available from: https://link.springer.com/article/10.1134/S2070205117050069