مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

یکپارچگی سطح قطعه‌کار و سایش ابزار در فرآیند فرزکاری با تکنیکهای مقدار روانکاری کمینه و خشک روی فولاد 304L

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه آزاد اسلامی، واحد تهران مرکزی
چکیده
این تحقیق به بررسی سایش ابزار، آنالیز عنصری روی سطح ماشینکاری، زبری سطح قطعه­کار، تغییرات ریزسختی و تغییرات ریزساختاری در سطح مقطع عرضی نمونه­های فرزکاری شده فولاد ضدزنگ L304 تحت روشهای خشک و روانکاری کمینه (MQL) می­پردازد. فرآیند MQL توانسته است زبری سطح ماشینکاری را برای تمام پارامترهای فرزکاری، از 17% تا 41% نسبت به حالات متناظر ماشینکاری خشک، بهبود بخشد. در ماشینکاری خشک، عیوبی نظیر لبه‌ انباشته، سایش شدید سطح آزاد و لب­پر شدگی ابزار ایجاد شدند. در فرزکاری MQL این عیوب کاهش چشمگیری داشتند و لب­پر شدگی روی سطح ابزار تقریبا حذف شده ‌است. با افزایش سرعت برشی و عمق برشی، سختی سطحی افزایش یافته است. روش MQL نسبت به خشک، باعث کمتر شدن مقادیر سختی و عمق سخت­شده زیر سطح ماشینکاری می­شود. بر اساس نتایج آنالیز عنصری EDAX روی سطوح ماشینکاری شده خشک و MQL، تحت خشن­ترین پارامترهای برشی مشخص شد که هیچگونه تغییر عناصر شیمیایی در سطح ماشینکاری رخ نداده است. افزایش پارامترهای برشی و یا ماشینکاری خشک، سبب تشدید تغییر شکل پلاستیک، لهیده شدن ریزساختار و فشرده شدن دانه­های ریزساختاری در مجاورت سطح ماشینکاری می‌شود. حداکثر مقدار کاهش ضخامت لایه تغییر شکل یافته در فرزکاری MQL نسبت به خشک 39% است. برای هر نمونه فرزکاری، بین عمق سخت شده و ضخامت لایه تغییر شکل یافته ریزساختاری متناظرش، یک رابطه مستقیم وجود دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Surface Integrity and Tool Wear in Milling Process Using Minimum Quantity Lubrication and Dry Techniques on 304L Steel

نویسندگان English

Aria Tajoddin
Amir Hossein Ranjbar
Behzad Jabbaripour
Central Tehran Branch, Islamic Azad University
چکیده English

This research investigates tool wear, elemental analysis (EDAX) on the machined surface, surface roughness, microhardness and microstructural changes in the cross-section of milled 304L stainless steel samples under dry and Minimum quantity lubrication (MQL) methods. The MQL process was able to improve the surface roughness for all milling parameters from 17% to 41% compared to the corresponding dry conditions. In dry machining, defects such as built up edge, severe flank wear and tool chipping were created. In MQL mode, these defects were significantly reduced and tool chipping was almost eliminated. By increase of cutting speed and depth, the surface hardness has increased. Compared to the dry method, the MQL reduces the hardness values and hardened depth below the machined surface. According to EDAX analysis on dry and MQL machined surfaces, applying the roughest cutting parameters, it was determined that no change of chemical elements occurred on machined surfaces. Increasing cutting parameters or dry machining causes the plastic deformation to intensify, the microstructure is flattened and the microstructure grains are compressed in the vicinity of the machined surface. The maximum reduction in thickness of deformed layer in MQL compared to dry method is 39%. For each milling sample, there is a direct relationship between the hardened depth and thickness of the corresponding microstructurally deformed layer.

کلیدواژه‌ها English

stainless steel
milling
minimum quantity lubrication
Surface integrity
Tool wear
[1] Kaviani nezhad F. Stainless and heat resistance steels. Abgin Rayan publication. 2007; 19-50 (In Persian).
[2] Endrino J.L, Fox-Rabinovich G.S, Gey C. Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel. Surface and Coatings Technology. 2006; 200 (24): 6840–6845.
[3] Maruda R, Krolczyk G, Feldshtein E, Pusavec F, Szydlowski M, Legutko S, Sobczak-Kupiec A. A study on droplets sizes, distribution and heat exchange for minimum quantity cooling lubrication (MQCL). International Journal of Machine Tools & Manufacture. 2016; 100: 81-92.
[4] Jabbaripour B, Sadeghi M.H, Shabgard M.R, Faraji H. Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of γ-TiAl intermetallic. Manufacturing Processes. 2013; 15 (1): 56-68.
[5] Jabbaripour B, Sadeghi M.H, Shabgard M.R, Faraji H. Investigating Output Characteristics in Powder Mixed Electrical Discharge Machining of γ–TiAl Intermetallic. Modares Mechanical Engineering. 2013; 12 (5) :74-86 (in Persian).
[6] Molla Ramezani N, Rasti A, Sadeghi M.H, Jabbaripour B, Rezaei Hajideh M. Experimental study of tool wear and surface roughness on high speed helical milling in D2 steel. Modares Mechanical Engineering. Proceedings of the Advanced Machining and Machine Tools Conference. 2015; 15 (13): 198-202 (in Persian).
[7] Jabbaripour B, Sadeghi M.H, Shabgard M.R, Shajari Sh, Hassanpour H. Investigating the effects of powder mixed electrical discharge machining on the surface quality of γ–TiAl intermetallic. Advanced Materials Research. 2012; 488: 396-401.
[8] Ansari M.J, Jabbaripour B, Manufacture and comparison of mechanical properties of reinforced polypropylene nanocomposite with carbon fibers and calcium carbonate nanoparticles, Iranian Journal of Manufacturing Engineering. 2019; 6 (5): 1-12 (in Persian).
[9] Azlan U.A.A, Hadzley M, Fauzi Tamin N, Noor F.M, Azhar A.A, Rahimi Yusoff M, Noriman N.Z. Observation of Built-up Edge Formation on a Carbide Cutting Tool with Machining Aluminium Alloy under Dry and Wet Conditions. MATEC Web of Conferences. 2017; 97: 01076.
[10] Zhang S, Li J.F, Wang Y.W. Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. Journal of Cleaner Production. 2012; 32: 81-87.
[11] Kedare S.B, Borse D.R, Shahane P.T. Effect of Minimum Quantity Lubrication (MQL) on Surface Roughness of Mild Steel of 15HRC on Universal Milling Machine. Procedia: Materials Science. 2014; 6: 150 – 153.
[12] Pereira O, Rodríguez A, Fernández-Abia A.I, Barreiro J, López de Lacalle L.N. Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. Journal of Cleaner Production. 2016; 139: 440-449.
[13] Thakur A, Gangopadhyay S. State-of-the-art in surface integrity in machining of nickel-based super alloys. International Journal of Machine Tools& Manufacture. 2016; 100: 25–54.
[14] Hongmin X, Yaoyao S. Surface Morphology and Affected Layer in Disc-milling Grooving of Titanium Alloy. Rare Metal Materials and Engineering. 2016; 45 (12): 3050-3056.
[15] Azami A, Salahshournejad Z, Shakouri E, Sharifi A.R, Saraeian P. Influence of nano- minimum quantity lubrication with MoS2 and CuO nanoparticles on cutting forces and surface roughness during grinding of AISI D2 steel. Jouranl of manufacturing processes. 2023; 87: 209-220.
[16] Emami M. Study of the performance of minimum quantity lubrication (MQL) and type of lubricant in the milling process of stainless steel EN1.4903. Iranian Journal of Manufacturing Engineering. 2019; 6 (3): 28-42 (In Persian).
[17] Zhao W, He N, Li L. High Speed Milling of Ti6Al4V Alloy with Minimal Quantity Lubrication. Key Engineering Materials. 2007; 329: 663-668.
[18] Saketi S, Olsson M. Influence of CVD and PVD coating micro topography on the initial material transfer of 316L stainless steel in sliding contacts- a laboratory study. Wear. 2017; 388: 29-38.
[19] Andersson A. Built-up edge formation in stainless steel milling. Master of Science Thesis MSE. Sweden. KTH royal institute of technology; 2017.
[20] Ulutan D, Ozel T. Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools & Manufacture. 2011; 51 (3): 250–280.
[21] Huang W, Zhao J, Niu J, Wang G, Cheng R. Comparison in surface integrity and fatigue performance for hardened steel ball-end milled with different milling speeds. Procedia CIRP. 2018; 71 (4): 267-271.
[22] Bordina A, Bruschi S, Ghiotti A. The effect of cutting speed and feed rate on the surface integrity in dry turning of CoCrMo alloy. Procedia CIRP. 2014; 13: 219– 224.
[23] Yang X, Richard Liu C. Machining titanium and its alloys. Machining Science and Technology. 1999; 3 (1): 107-139.
[24] Jabbaripour B, Souzani Masouleh H, Lavaei Salmasi M.H. Comparison of surface integrity, tool wear and chip morphology in CO2 cryogenic and dry milling of 304 stainless steel. Surface Topography: Metrology and Properties. 2021; 9 (1): 015032.
[25] Dinarvand S, Jabbaripour B. Comparison of Machined Surface Integrity in 304L Stainless Steel Turning under Minimum Quantity Lubrication (MQL) and Cryogenic (CO2) Conditions. Modares Mechanical Engineering. 2023; 23 (11) :577-585 (In Persian).