مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه سینتیکی و ترمودینامیکی مشخصات احتراقی ترکیب سوخت آمونیاک با گاز زباله در فشارهای افزایش یافته

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه کاشان
2 دانشگاه تهران
چکیده
توجه و علاقه زیاد پژوهشگران برای استفاده از آمونیاک در سیستم‌های احتراقی به‌عنوان سوختی بدون کربن برای توربین‌های گازی و همچنین وجود زیرساخت‌های توسعه‌یافته برای تولید آن نشان از اهمیت این نوع از سوخت و این موضوع است. بعلاوه یکی از بهترین کاندیداها برای ذخیره کردن انرژی‌های تجدید پذیر در مقیاس‌های بزرگ یا حمل­های با فواصل زیاد، بدون شک می­تواند آمونیاک باشد. در توربین‌های گازی و بویلرها، افزودن گازهای زباله می­تواند واکنش‌پذیری آمونیاک را به طرز مؤثری بهبود ‌بخشد. در این مطالعه، شاخصه-های احتراقی مخلوط‌ آمونیاک/گاز زباله/هوا بین فشار 1 تا 10 اتمسفر را درون یک محفظه احتراق با حجم ثابت 11 لیتر با استفاده از روش­های آزمایشگاهی اینترفرومتری ماخ-زندر و شلیرن موردبررسی قرارگرفته است. بخش عددی این مطالعه با استفاده از نرم‌افزار کمکین - پرو از پکیج انسیس از طریق مکانیسم‌های سن دیگو، اکافور و مکانیزم جی آر آی 3 و انجام‌شده است که قادر به پیش‌بینی دقیقی از سرعت‌های شعله هستند. نتایج به‌دست‌آمده نشان می‌دهند که بیشترین تأثیر بر روی سرعت شعله ناشی از تغییر در غلظت آمونیاک موجود در مخلوط می­­باشد. همچنین، به این نتیجه رسیده شد که سرعت شعله با افزایش فشار به‌تدریج کاهش می‌یابد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Kinetic and Thermodynamic Study of the Combustion Characteristics of the Combination of Ammonia Fuel with Waste Gas at Elevated Pressures

نویسندگان English

Mehrdad Kiani 1
Ali Akbar Abbasian Arani 1
Ehsan Houshfar 2
Mehdi Ashjaee 2
1 University of Kashan
2 University of Tehran
چکیده English

The great attention and interest of researchers to use ammonia in combustion systems as a carbon-free fuel for gas turbines, as well as the existence of developed infrastructure for its production, show the importance of present fuel and this issue. In addition, one of the best candidates for storing renewable energies on large scales or transporting them for long distances is doubtlessly Ammonia (NH3). In gas turbines and boilers, adding landfill gas improve NH3 reactivity effectively. The present effort studies NH3/landfill mixtures’ laminar flame propagation from 1 to 10 atm in an 11-liter constant volume combustion chamber using experimental approaches such as Mach-Zehnder and Schlieren interferometry method. The numerical study was performed using the Ansys Chemkin-Pro package via San Diego, Okafor, and GRI-Mech 3.0 mechanisms which can provide very accurate predictions for laminar burning velocities. The results indicated that the most considerable influence on increasing laminar burning velocities could be attributed to Ammonia concentration in the mixture. The experiments also showed that laminar burning velocity is reduced when the pressure is increased.

کلیدواژه‌ها English

Laminar burning velocity
Landfill gas (LFG)
Kinetic model
Elevated pressure
1. Valera-Medina A, Xiao H, Owen-Jones M, David WI, Bowen P. Ammonia for power. Progress in Energy and combustion science. 2018;69:63-102.
2. Kobayashi H, Hayakawa A, Somarathne KKA, Okafor EC. Science and technology of ammonia combustion. Proceedings of the combustion institute. 2019;37(1):109-33.
3. Hayakawa A, Goto T, Mimoto R, Arakawa Y, Kudo T, Kobayashi H. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel. 2015;159:98-106.
4. Mei B, Zhang X, Ma S, Cui M, Guo H, Cao Z, et al. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combustion and Flame. 2019;210:236-46.
5. Han X, Wang Z, Costa M, Sun Z, He Y, Cen K. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combustion and Flame. 2019;206:214-26.
6. Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, et al. Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combustion and flame. 2018;187:185-98.
7. Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, et al. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combustion and Flame. 2019;204:162-75.
8. Cardona CA, Amell AA. Laminar burning velocity and interchangeability analysis of biogas/C3H8/H2 with normal and oxygen-enriched air. International Journal of Hydrogen Energy. 2013;38(19):7994-8001.
9. Beeckmann J, Cai L, Pitsch H. Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure. Fuel. 2014;117:340-50.
10. Al-Hamamre Z, Yamin J. The effect of hydrogen addition on premixed laminar acetylene–hydrogen–air and ethanol–hydrogen–air flames. International journal of hydrogen energy. 2013;38(18):7499-509.
11. He Y, Wang Z, Yang L, Whiddon R, Li Z, Zhou J, et al. Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation. Fuel. 2012;95:206-13.
12. Hinton N, Stone R. Laminar burning velocity measurements of methane and carbon dioxide mixtures (biogas) over wide ranging temperatures and pressures. Fuel. 2014;116:743-50.
13. Dai W, Qin C, Chen Z, Tong C, Liu P. Experimental studies of flame stability limits of biogas flame. Energy conversion and management. 2012;63:157-61.
14. Zhang C, Shen X, Wen JX, Xiu G. The behavior of methane/hydrogen/air premixed flame in a closed channel with inhibition. Fuel. 2020;265:116810.
15. Galmiche B, Halter F, Foucher F, Dagaut P. Effects of dilution on laminar burning velocity of premixed methane/air flames. Energy & Fuels. 2011;25(3):948-54.
16. Halter F, Foucher F, Landry L, Mounaïm-Rousselle C. Effect of dilution by nitrogen and/or carbon dioxide on methane and iso-octane air flames. Combustion Science and Technology. 2009;181(6):813-27.
17. Kiani M, Houshfar E, Ashjaee M. An experimental and numerical study on the combustion and flame characteristics of hydrogen in intersecting slot burners. International Journal of Hydrogen Energy. 2018;43(5):3034-49.
18. Kiani M, Houshfar E, Ashjaee M. Experimental investigations on the flame structure and temperature field of landfill gas in impinging slot burners. Energy. 2019;170:507-20.
19. Wang L, Liu Z, Chen S, Zheng C, Li J. Physical and chemical effects of CO2 and H2O additives on counterflow diffusion flame burning methane. Energy & fuels. 2013;27(12):7602-11.
20. Hu E, Jiang X, Huang Z, Iida N. Numerical study on the effects of diluents on the laminar burning velocity of methane–air mixtures. Energy & fuels. 2012;26(7):4242-52.
21. Hauf W, Grigull U. Optical methods in heat transfer. Advances in heat transfer. 6: Elsevier; 1970. p. 133-366.
22. Flack RD. Mach-Zehnder interferometer errors resulting from test section misalignment. Applied Optics. 1978;17(7):985-7.
23. Chemkin-Pro A. Release 17.0 (Chemkin-Pro 15151) ANSYS. Inc(2016-01-11).14.
24. Ansys Inc. Ansys Chemkin-Pro. Chemistry Simulation Software2023.
25. Bardolf R, Winter F. Comparison of chemical kinetic mechanisms for combustion simulation of treated biogas. The Holistic Approach to Environment. 2014;4(2):65-9.
26. Kohansal M, Kiani M, Masoumi S, Nourinejad S, Ashjaee M, Houshfar E. Experimental and numerical investigation of NH3/CH4 mixture combustion properties under elevated initial pressure and temperature. Energy & Fuels. 2023;37(14):10681-96.
27. Askari MH, Ashjaee M. Experimental measurement of laminar burning velocity and flammability limits of landfill gas at atmospheric and elevated pressures. Energy & Fuels. 2017;31(3):3196-205.
28. Dowdy DR, Smith DB, Taylor SC, Williams A, editors. The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures. Symposium (International) on Combustion; 1991: Elsevier.
29. Matalon M, Matkowsky BJ. Flames as gasdynamic discontinuities. Journal of Fluid Mechanics. 1982;124:239-59.
30. Lhuillier C, Brequigny P, Lamoureux N, Contino F, Mounaïm-Rousselle C. Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures. Fuel. 2020;263:116653.
31. Kobayashi H, Tamura T, Maruta K, Niioka T, Williams FA, editors. Burning velocity of turbulent premixed flames in a high-pressure environment. Symposium (international) on combustion; 1996: Elsevier.
32. Konnov AA, Mohammad A, Kishore VR, Kim NI, Prathap C, Kumar S. A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+ air mixtures. Progress in Energy and Combustion Science. 2018;68:197-267.
33. Chen Z. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combustion and Flame. 2015;162(6):2442-53.
34. Yu H, Han W, Santner J, Gou X, Sohn CH, Ju Y, et al. Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames. Combustion and flame. 2014;161(11):2815-24.
35. Burke MP, Chen Z, Ju Y, Dryer FL. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combustion and Flame. 2009;156(4):771-9.
36. Ronney PD, Wachman HY. Effect of gravity on laminar premixed gas combustion I: Flammability limits and burning velocities. Combustion and Flame. 1985;62(2):107-19.
37. Kelley AP, Law CK. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combustion and Flame. 2009;156(9):1844-51.
38. Xiao H, Valera-Medina A, Marsh R, Bowen PJ. Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions. Fuel. 2017;196:344-51.
39. Iliuta I, Tahoces R, Patience GS, Rifflart S, Luck F. Chemical‐looping combustion process: Kinetics and mathematical modeling. AIChE journal. 2010;56(4):1063-79.
40. Sabia P, Sorrentino G, Chinnici A, Cavaliere A, Ragucci R. Dynamic behaviors in methane MILD and oxy-fuel combustion. Chemical effect of CO2. Energy & Fuels. 2015;29(3):1978-86.
41. Loo CE, Tame N, Penny GC. Effect of iron ores and sintering conditions on flame front properties. ISIJ international. 2012;52(6):967-76.
42. Cussler EL. Diffusion: mass transfer in fluid systems: Cambridge university press; 2009.
43. E. L. Cussler A. Diffusion, mass transfer in fluid systems New York: Cambridge University Press,1997.
44. Bellamy DJ, Clarke PH. Application of the Second Law of Thermodynamics and Le Chatelier's Principle to the Developing Ecosystem. Nature. 1968;218(5147):1180-.