[1] J. Y. Zhang, G. W. Yan, X. Shi, Y. F. Dong, A lattice Boltzmann model for the compressible Euler equations with second-order accuracy, International Journal for Numerical Methods in Fluids, Vol. 60, pp. 95-117, 2009.
[2] M. Passandideh-Fard, A new method to reach high-density ratios and low viscosities based on the Shan-Chen multiphase model in lattice Boltzmann method, Modares Mechanical Engineering, Vol. 17, No. 9, pp. 145-152, 2017.
[3] H. Jalali, R. Kamali Moghadam, Lattice Study of the Finite Volume-Lattice Boltzmann Method in Simulation of Laminar Viscous Compressible Flow, Modares Mechanical Engineering, Vol. 18, No. 3, pp. 417-428, 2018.
[4] M. B. Reider, J. D. Sterling, Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier–Stokes equations, Computers & Fluids, Vol. 24, pp. 459–467, 1995.
]5[ M. F. El-Amin, S. Sun, A. Salama, On the stability of the finite-difference based lattice Boltzmann method, Procedia Computer Science, Vol. 18, pp. 2101-2108, 2013.
[6] V. Sofonea, R. F. Sekerka, Viscosity of finite-difference lattice Boltzmann models, Journal of Computational Physics, Vol. 184, No. 2, pp. 422-34, 2003.
[7] T. Seta, R. Takahashi, Numerical stability analysis of FDLBM, Journal of Statistical Physics, Vol. 107, pp. 557-572, 2002.
[8] S. Vakilipour, M. Mohammadi, R. Riazi, Development of an implicit physical influence upwinding scheme for cell-centred finite volume method, Modares Mechanical Engineering, Vol. 16, No. 10, pp. 253-265, 2017.
[9] X. Shi , X. Huang, Y. Zheng, T. Ji, A hybrid algorithm of lattice Boltzmann method and finite difference–based lattice Boltzmann method for viscous flows, International Journal for Numerical Methods in Fluids, Vol. 85, No. 11, pp. 641-661, 2017.
[10] P. Fan, The standard upwind compact difference schemes for incompressible flow simulations, Journal of Computational Physics, Vol. 322, pp. 74-112, 2016.
[11] G. V. Krivovichev, Parametric schemes for the simulation of the advection process in finite-difference-based single-relaxation-time lattice Boltzmann methods, Journal of Computational Science, Vol. 44, 101151, 2020.
[12] K. Hejranfar, M. H. Saadat, S. Taheri, High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates, Physical review E, Vol. 95, No. 2, 023314, 2017.
[13] A. U. Shirsat, S. G. Nayak, D. V. Patil, Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method. Physical review E, Vol. 106, No. 2, 025314, 2022.
[14] S. R. G. Polasanapalli, K. Anupindi, A high-order compact finite-difference lattice Boltzmann method for simulation of natural convection, Computers and Fluids, Vol. 181, pp. 259-282, 2019.
[15] K. Hejranfar, E. Ezzatneshan, Implementation of a high-order compact finite-difference Lattice Boltzmann method in generalized curvilinear coordinates, Journal of Computational Physics, Vol. 267, pp. 28–49, 2014.
[16] E. Ezzatneshan, K. Hejranfar, Simulation of three-dimensional incompressible flows in generalized curvilinear coordinates using a high-order compact finite-difference Lattice Boltzmann method, International Journal for Numerical Methods in Fluids, Vol. 89, No. 7, pp. 235–255, 2019.
[17] K. Hejranfar, and M. H. Saadat, Preconditioned WENO finite-difference lattice Boltzmann method for simulation of incompressible turbulent flows. Computers & Mathematics with Applications, 76(6), 1427-1446, 2018.
[18] W. Li, High order spectral difference lattice Boltzmann method for incompressible hydrodynamics. Journal of Computational Physics, 345, 618-636, 2017.
[19] Y. X. Sun, Z. F. Tian, High-order upwind compact finite-difference lattice Boltzmann method for viscous incompressible flows, Computers & Mathematics with Applications, Vol. 80, No. 7, pp. 1858-1872, 2020.
[20] X. Chen, Z. Chai, H. Wang, B. Shi, A finite-difference lattice Boltzmann model with second-order accuracy of time and space for incompressible flow, arXiv preprint arXiv, pp. 1911. 12913, 2019.
[21] S. Ahmed, H. Abdelhamid, B. Ismail, F. Ahmed, An differential quadrature finite element and the differential quadrature hierarchical finite element methods for the dynamics analysis of on board shaft. European Journal of Computational Mechanics, pp. 303-344, 2020.
[22] R. Bellman, J. Casti, Differential quadrature and long-term integration, Journal of Mathematical analysis and Applications, Vol. 34., No. 2, pp. 235-238, 1971.
[23] C. W. Bert, M. Malik, Differential quadrature method in computational mechanics: a review, pp. 1-28, 1996.
[24] Y. Y .Liu, L. M. Yang, C. Shu, H. W. Zhang, Efficient high-order radial basis-function-based differential quadrature–finite volume method for incompressible flows on unstructured grids, Physical review E, Vol. 104, No. 4, 045312, 2021.
[25] J. A. Sun, Z. Y. Zhu, Upwind local differential quadrature method for solving incompressible viscous flow, Computer Methods in Applied Mechanics and Engineering, Vol. 188, No. 1-3, pp. 495-504, 2000.
[26] Y. Liu, C. Shu, P. Yu, , Y. Liu, H. Zhang, and C. Lu, A high-order generalized differential quadrature method with lattice Boltzmann flux solver for simulating incompressible flows, Physics of Fluids, 35(4), 2023.
[27] Y. Y. Liu, L. M. Yang, C. Shu, Z. L. Zhang, Z. Y. Yuan, An implicit high-order radial basis function-based differential quadrature-finite volume method on unstructured grids to simulate incompressible flows with heat transfer, Journal of Computational Physics, Vol. 467, 111461, 2022.
[28] R. Du, B. Shi, Incompressible MRT lattice Boltzmann model with eight velocities in 2D space, International Journal of Modern Physics C, Vol. 20, No. 7, pp. 1023-1037, 2009.
[29] H. Wang, B. Shi, H. Liang, Z. Chai, Finite-difference Lattice Boltzmann model for nonlinear convection-diffusion equations, Applied Mathematics and Computation, Vol. 309, pp. 334–349, 2017.
[30] N. Dehghani Vyncheh, S. Talebi, The study of heating a cavity with moving cylinder using hybrid Lattice Boltzmann-Finite difference–Immersed Boundary method, Modares Mechanical Engineering, Vol. 16, No. 10, pp. 19-30, 2017.
[31] H. Kameli, F. Kowsary, Solution of inverse heat conduction problem using the lattice Boltzmann method, International Communications in Heat and Mass Transfer, Vol. 39, No. 9, pp. 1410-1415, 2012.
[32] M. Sun, K. Takayama, Error localization in solution-adaptive grid methods, Journal of Computational Physics, Vol. 190, No. 1, pp. 346-350, 2003.
[33] A. C. Velivelli, K. M. Bryden, Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation, Physica A: Statistical Mechanics and its Applications, Vol. 362, No. 1, pp. 139-145, 2006.
[34] H. Schlichting, J. Kestin, Boundary layer theory, Vol. 121, New York: McGraw-Hill, 1961.
[35] L. Xu, W. Zhang, Z. Yan, Z. Du, R. Chen, A novel median dual finite volume lattice Boltzmann method for incompressible flows on unstructured grids, International Journal of Modern Physics C, Vol. 31, No. 12, 2050173, 2020.
[36] K. N. Ghia, C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of computational physics, Vol. 48, No. 3, pp. 387-411, 1982.
[37] Z. Guo, T. S. Zhao, Explicit finite-difference lattice Boltzmann method for curvilinear coordinates, Physical review E, Vol. 67, No. 6, 066709, 2003.
[38] E. Erturk, T. C. Corke, C. Gokçol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, International Journal for Numerical Methods in fluids, Vol. 48, No. 7, pp. 747-774, 2005.