مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

افزایش پایداری عددی روش شبکه بولتزمن در شبیه سازی جریان های تراکم ناپذیر با اعداد رینولدز بالاتر

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه آزاد اسلامی، واحد یادگار امام خمینی (ره)
2 دانشگاه آزاد اسلامی، واحد کرج
چکیده
در این مطالعه، از یک طرح جدید پادبادسو برای حل معادله پیوسته بولتزمن و توسعه کاربرد آن در حل موثر جریان­های تراکم­ناپذیر استفاده شده ‌است. مشتق زمانی در معادله بولتزمن با استفاده از طرح تفاضلات محدود پیشرو مرتبه اول و مشتق‌های مکانی آن بوسیله این طرح جدید گسسته­سازی شده­اند. علاوه بر این، اثرات ترکیبی مکانیزم تفاضل پادبادسو به همراه روش تفاضلات محدود برای بهبود پایداری روش شبکه بولتزمن استاندارد در حل مسائل با اعداد رینولدز بالا ارائه شده است. برای تایید اعتبار روش شبکه بولتزمن مبتنی بر طرح جدید پادبادسو، یک مساله ناپایا که حل تحلیلی دارد و دو مساله تراکمناپذیر پایا که حل تحلیلی ندارند به صورت عددی حل شده­اند. مساله معیار اول، مساله انتقال حرارت هدایتی روی یک میله و دو مساله دیگر شامل جریان سیال روی یک صفحه تخت و جریان حفره با درپوش متحرک است. به منظور بررسی دقت و پایداری عددی روش شبکه بولتزمن مبتنی بر طرح جدید پادبادسو نتایج حاصل با روش شبکه بولتزمن استاندارد و روش شبکه بولتزمن تفاضلات محدود مقایسه شده است. روش حاضر تضمین می‌کند که بدون اعمال روش فیلترینگ، نتایج پایدارتر و دقیق‌تری نسبت­ به روش شبکه بولتزمن تفاضلات محدود به‌دست می­آید. نتایج شبیه‌سازی، کارایی روش شبکه بولتزمن مبتنی بر طرح جدید پادبادسو و تطابق مناسب آن را با حل­های تحلیلی و سایر روش­های عددی نشان­ می­دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical Stability Enhancement of Lattice Boltzmann Method in The Simulation of Incompressible Flows with Higher Reynolds Numbers

نویسندگان English

Mohammad Reza Saremi Tehrani 1
Mohsen Ghadyani 1
Vali Enjilela 2
1 Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch
2 Islamic Azad University, Karaj Branch
چکیده English

In this study, a new upwind scheme has been used to solve the continuous Boltzmann equation and to develop its application in the effective solution of incompressible flows. Time derivative in the Boltzmann equation has been discretized using the first-order forward finite difference scheme. The spatial derivatives in the Boltzmann equation have been discretized using this new scheme. Further, the combined effects of the upwind differential mechanism along with the finite difference method are presented to enhancement the stability of the standard lattice Boltzmann method in solving problems with high Reynolds numbers. To confirm the validation of the proposed method, one unsteady problem, this has an analytical solution, and two incompressible steady problems which have not analytical solutions, have been solved numerically. The first benchmark problem is the conductive heat transfer on a slab and two last problems are flow over a flat plate and flow in a lid-driven cavity. In order to check the numerical accuracy and stability of the proposed method, the results have been compared with the standard lattice Boltzmann method and the finite difference lattice Boltzmann method. The proposed method guarantees that without applying the filtering method, more stable and accurate results are obtained compared with the finite difference lattice Boltzmann method. The simulation results show the effectiveness of the present method and its appropriate compatibility with analytical solutions and other numerical methods.

کلیدواژه‌ها English

Incompressible Flow
Standard Lattice Boltzmann Method
Finite Difference Lattice Boltzmann Method
Numerical Stability
Upwind Scheme
[1] J. Y. Zhang, G. W. Yan, X. Shi, Y. F. Dong, A lattice Boltzmann model for the compressible Euler equations with second-order accuracy, International Journal for Numerical Methods in Fluids, Vol. 60, pp. 95-117, 2009.
[2] M. Passandideh-Fard, A new method to reach high-density ratios and low viscosities based on the Shan-Chen multiphase model in lattice Boltzmann method, Modares Mechanical Engineering, Vol. 17, No. 9, pp. 145-152, 2017. ‏
[3] H. Jalali, R. Kamali Moghadam, Lattice Study of the Finite Volume-Lattice Boltzmann Method in Simulation of Laminar Viscous Compressible Flow, Modares Mechanical Engineering, Vol. 18, No. 3, pp. 417-428, 2018.
[4] M. B. Reider, J. D. Sterling, Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier–Stokes equations, Computers & Fluids, Vol. 24, pp. 459–467, 1995.
]5[ M. F. El-Amin, S. Sun, A. Salama, On the stability of the finite-difference based lattice Boltzmann method, Procedia Computer Science, Vol. 18, pp. 2101-2108, 2013.
[6] V. Sofonea, R. F. Sekerka, Viscosity of finite-difference lattice Boltzmann models, Journal of Computational Physics, Vol. 184, No. 2, pp. 422-34, 2003.
[7] T. Seta, R. Takahashi, Numerical stability analysis of FDLBM, Journal of Statistical Physics, Vol. 107, pp. 557-572, 2002.
[8] S. Vakilipour, M. Mohammadi, R. Riazi, Development of an implicit physical influence upwinding scheme for cell-centred finite volume method, Modares Mechanical Engineering, Vol. 16, No. 10, pp. 253-265, 2017.
[9] X. Shi , X. Huang, Y. Zheng, T. Ji, A hybrid algorithm of lattice Boltzmann method and finite difference–based lattice Boltzmann method for viscous flows, International Journal for Numerical Methods in Fluids, Vol. 85, No. 11, pp. 641-661, 2017.
[10] P. Fan, The standard upwind compact difference schemes for incompressible flow simulations, Journal of Computational Physics, Vol. 322, pp. 74-112, 2016.
[11] G. V. Krivovichev, Parametric schemes for the simulation of the advection process in finite-difference-based single-relaxation-time lattice Boltzmann methods, Journal of Computational Science, Vol. 44, 101151, 2020.
[12] K. Hejranfar, M. H. Saadat, S. Taheri, High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates, Physical review E, Vol. 95, No. 2, 023314, 2017. ‏
[13] A. U. Shirsat, S. G. Nayak, D. V. Patil, Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method. Physical review E, Vol. 106, No. 2, 025314, 2022.
[14] S. R. G. Polasanapalli, K. Anupindi, A high-order compact finite-difference lattice Boltzmann method for simulation of natural convection, Computers and Fluids, Vol. 181, pp. 259-282, 2019.
[15] K. Hejranfar, E. Ezzatneshan, Implementation of a high-order compact finite-difference Lattice Boltzmann method in generalized curvilinear coordinates, Journal of Computational Physics, Vol. 267, pp. 28–49, 2014.
[16] E. Ezzatneshan, K. Hejranfar, Simulation of three-dimensional incompressible flows in generalized curvilinear coordinates using a high-order compact finite-difference Lattice Boltzmann method, International Journal for Numerical Methods in Fluids, Vol. 89, No. 7, pp. 235–255, 2019.
[17] K. Hejranfar, and M. H. Saadat, Preconditioned WENO finite-difference lattice Boltzmann method for simulation of incompressible turbulent flows. Computers & Mathematics with Applications, 76(6), 1427-1446, 2018.
[18] W. Li, High order spectral difference lattice Boltzmann method for incompressible hydrodynamics. Journal of Computational Physics, 345, 618-636, 2017.
[19] Y. X. Sun, Z. F. Tian, High-order upwind compact finite-difference lattice Boltzmann method for viscous incompressible flows, Computers & Mathematics with Applications, Vol. 80, No. 7, pp. 1858-1872, 2020.
[20] X. Chen, Z. Chai, H. Wang, B. Shi, A finite-difference lattice Boltzmann model with second-order accuracy of time and space for incompressible flow, arXiv preprint arXiv, pp. 1911. 12913, 2019.
[21] S. Ahmed, H. Abdelhamid, B. Ismail, F. Ahmed, An differential quadrature finite element and the differential quadrature hierarchical finite element methods for the dynamics analysis of on board shaft. European Journal of Computational Mechanics, pp. 303-344, 2020.
[22] R. Bellman, J. Casti, Differential quadrature and long-term integration, Journal of Mathematical analysis and Applications, Vol. 34., No. 2, pp. 235-238, 1971.
[23] C. W. Bert, M. Malik, Differential quadrature method in computational mechanics: a review, pp. 1-28, 1996.
[24] Y. Y .Liu, L. M. Yang, C. Shu, H. W. Zhang, Efficient high-order radial basis-function-based differential quadrature–finite volume method for incompressible flows on unstructured grids, Physical review E, Vol. 104, No. 4, 045312, 2021.
[25] J. A. Sun, Z. Y. Zhu, Upwind local differential quadrature method for solving incompressible viscous flow, Computer Methods in Applied Mechanics and Engineering, Vol. 188, No. 1-3, pp. 495-504, 2000.
[26] Y. Liu, C. Shu, P. Yu, , Y. Liu, H. Zhang, and C. Lu, A high-order generalized differential quadrature method with lattice Boltzmann flux solver for simulating incompressible flows, Physics of Fluids, 35(4), 2023.
[27] Y. Y. Liu, L. M. Yang, C. Shu, Z. L. Zhang, Z. Y. Yuan, An implicit high-order radial basis function-based differential quadrature-finite volume method on unstructured grids to simulate incompressible flows with heat transfer, Journal of Computational Physics, Vol. 467, 111461, 2022.
[28] R. Du, B. Shi, Incompressible MRT lattice Boltzmann model with eight velocities in 2D space, International Journal of Modern Physics C, Vol. 20, No. 7, pp. 1023-1037, 2009.
[29] H. Wang, B. Shi, H. Liang, Z. Chai, Finite-difference Lattice Boltzmann model for nonlinear convection-diffusion equations, Applied Mathematics and Computation, Vol. 309, pp. 334–349, 2017.
[30] N. Dehghani Vyncheh, S. Talebi, The study of heating a cavity with moving cylinder using hybrid Lattice Boltzmann-Finite difference–Immersed Boundary method, Modares Mechanical Engineering, Vol. 16, No. 10, pp. 19-30, 2017.
[31] H. Kameli, F. Kowsary, Solution of inverse heat conduction problem using the lattice Boltzmann method, International Communications in Heat and Mass Transfer, Vol. 39, No. 9, pp. 1410-1415, 2012.
[32] M. Sun, K. Takayama, Error localization in solution-adaptive grid methods, Journal of Computational Physics, Vol. 190, No. 1, pp. 346-350, 2003.
[33] A. C. Velivelli, K. M. Bryden, Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation, Physica A: Statistical Mechanics and its Applications, Vol. 362, No. 1, pp. 139-145, 2006.
[34] H. Schlichting, J. Kestin, Boundary layer theory, Vol. 121, New York: McGraw-Hill, 1961.
[35] L. Xu, W. Zhang, Z. Yan, Z. Du, R. Chen, A novel median dual finite volume lattice Boltzmann method for incompressible flows on unstructured grids, International Journal of Modern Physics C, Vol. 31, No. 12, 2050173, 2020.
[36] K. N. Ghia, C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of computational physics, Vol. 48, No. 3, pp. 387-411, 1982.
[37] Z. Guo, T. S. Zhao, Explicit finite-difference lattice Boltzmann method for curvilinear coordinates, Physical review E, Vol. 67, No. 6, 066709, 2003.
[38] E. Erturk, T. C. Corke, C. Gokçol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, International Journal for Numerical Methods in fluids, Vol. 48, No. 7, pp. 747-774, 2005.