1. Road traffic injuries [Internet]. Available from: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.
2. Hari Priyadharshini A, Khan J, Sreedharan P, editors. Development and Validation of Adaptive Cruise Control Algorithm for ADAS Applications. Congress on Intelligent Systems; 2024: Springer.
3. advanced-technologies [Available from: https://www.nhtsa.gov/crash-avoidance/advanced-technologies.
4. Reda M, Onsy A, Haikal AY, Ghanbari A. Path planning algorithms in the autonomous driving system: A comprehensive review. Robotics and Autonomous Systems. 2024;174:104630.
5. Jin X, Li Z, Opinat Ikiela NV, He X, Wang Z, Tao Y, et al. An Efficient Trajectory Planning Approach for Autonomous Ground Vehicles Using Improved Artificial Potential Field. Symmetry. 2024;16(1):106.
6. Raeesi H, Khosravi A, Sarhadi P. Collision avoidance for autonomous vehicles using reachability-based trajectory planning in highway driving. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2024:09544070231222053.
7. Skačkauskas P, Karpenko M, Prentkovskis O. Design and Implementation of a Hybrid Path Planning Approach for Autonomous Lane Change Manoeuvre. International Journal of Automotive Technology. 2024:1-13.
8. Wang F, Shen T, Zhao M, Ren Y, Lu Y, Feng B, et al. Lane-Change Trajectory Planning and Control Based on Stability Region for Distributed Drive Electric Vehicle. IEEE Transactions on Vehicular Technology. 2023.
9. Luo H, Wang M, Luo W, Lv W, Yang D. Lane-changing trajectory planning model for automated vehicles driving on a curved road. Transportation research record. 2023;2677(1):929-42.
10. Tucker K, Gover R, Jazar R, Marzbani H. Feasible trajectory planning for minimum time manoeuvring. Vehicle System Dynamics. 2024;62(1):244-75.
11. Sazgar H, Azadi S, Kazemi R. Trajectory planning and integrated control with the Nonlinear Bicycle Model for high-speed autonomous lane change. Modares Mechanical Engineering. 2018;18(2):103-14.
12. Sazgar H, Azadi S, Kazemi R. Trajectory planning and combined control design for critical high-speed lane change manoeuvres. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2020;234(2-3):823-39.
13. Sazgar H, Azadi S, Kazemi R, Khalaji AK. Integrated longitudinal and lateral guidance of vehicles in critical high speed manoeuvres. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 2019;233(4):994-1013.
14. Sazgar H. Integrated Control of Longitudinal and Lateral Vehicle Dynamics to Improve Automated Lane Change Maneuver: K. N. Toosi University of Technology; 2019.
15. Rajamani R. Vehicle Dynamics and Control: Springer US; 2006.
16. Bakker E, Nyborg L, Pacejka HB. Tyre modelling for use in vehicle dynamics studies. SAE transactions. 1987:190-204.
17. Kiencke U, Nielsen L. Automotive Control Systems: For Engine, Driveline, and Vehicle: Springer; 2005.
18. Milanés V, González C, Naranjo JE, Onieva E, De Pedro T. Electro-hydraulic braking system for autonomous vehicles. International Journal of Automotive Technology. 2010;11:89-95.