مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی اثر آنیل کردن و پارامترهای چاپ بر استحکام و مدول فشاری ساختارهای متخلخل چاپ سه‌بعدی شده با تخلخلهای به‌هم‌پیوسته از جنس پلی لاکتیک اسید به روش لایه نشانی ذوبی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه صنعتی سیرجان
چکیده
با ظهور و گسترش فرآیندهای ساخت افزایشی، به ویژه فرآیند لایه نشانی ذوبی، تحقیقات وسیعی در مورد این فرآیندها صورت پذیرفته است. یکی از حوزه‌های تحقیقاتی مهم مربوط به استحکام‌بخشی به قطعات چاپ‌شده به روش لایه نشانی ذوبی است. این فرآیند امکان تولید ساختارهای پیچیده و شخصی‌سازی قطعات را امکان‌پذیر می‌سازد. از طرفی ماده پلی لاکتیک اسید یکی از اصلی‌ترین مواد مورد استفاده در این فرایند است که به دلیل خواص زیست­سازگاری و زیست‌تخریب‌پذیری، بیشتر از سایر مواد مورد توجه قرارگرفته است. در این پژوهش، اثر عملیات حرارتی آنیل کردن بر استحکام و مدول فشاری نمونه‌های متخلخل با رویکرد استفاده در مهندسی بافت به‌عنوان جایگزین بافت استخوانی، مورد بررسی قرارگرفته است. نمونه‌ها با الگوی لرزشی، شبکه‌ای و لانه‌زنبوری و با درصدهای پر شدن 40، 70 و 100 چاپ سه‌بعدی می‌شوند. علاوه بر این اثر دو پارامتر عرض روزن‌رانی و ارتفاع لایه‌ها نیز مورد بررسی قرارگرفته است. به ‌منظور ایجاد ساختارهای متخلخل با تخلخل‌های به‌هم‌پیوسته، الگوی پر شدن در هر لایه به میزان مشخص دوران کرده و این امر سبب معرفی ساختارهای متخلخل جدیدی می‌شود که این ساختارها می‌توانند کاربردهای وسیعی مانند به‌کارگیری به عنوان داربست در مهندسی بافت، داشته باشند. بعد از ارزیابی خواص مکانیکی فشاری نمونه‌ها، نمونه‌های مشابه عملیات حرارتی شده و سپس خواص مکانیکی فشاری آن‌ها نیز ارزیابی گردید. نتایج حاصل‌شده نشان می‌دهد که حداکثر استحکام و مدول فشاری در نمونه با عرض روزن‌رانی 6/0 میلی‌متر، ارتفاع لایه 25/0 میلی‌متر، الگوی پر شدن لرزشی و درصد پر شدن 100 اتفاق می‌افتد. مقادیر استحکام و مدول فشاری برای نمونه عملیات حرارتی نشده به ترتیب برابر با 51/84 مگاپاسکال و 28/2 گیگاپاسکال و برای نمونه عملیات حرارتی شده به ترتیب برابر با 44/105 مگاپاسکال و 29/2 گیگاپاسکال است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Investigation of the Effect of Annealing and Printing Parameters on the Compressive Strength and Modulus of 3D Printed Porous Structures with Interconnected Pores Made of Polylactic Acid by Fused Deposition Modeling Process.

نویسندگان English

Reza Zanganeh
Amin Safi Jahanshahi
Behnam Akhoundi
Sirjan University of Technology
چکیده English

With the emergence and expansion of additive manufacturing processes, especially the fused deposition modeling process, extensive research has been conducted on these processes. One important research area is strengthening the printed parts by the fused deposition modeling method. One of the main areas of research is related to the strengthening of printed parts by the fused deposition modeling method. This process enables the production of complex structures and the customization of parts. On the other hand, polylactic acid material is one of the main materials used in this process, which has been noticed over other materials due to its biocompatibility and biodegradability properties. In this research, the effect of annealing heat treatment on the compressive strength and modulus of porous samples has been investigated with the approach of using them in tissue engineering as a scaffold for bone tissue. The samples are 3D printed with wiggle, grid, and honeycomb patterns and with filling percentages of 40, 70, and maximum. In addition, the effect of two parameters, the extrusion width, and the layer height, has also been investigated. To create porous structures with interconnected porosities, the pattern of filling in each layer is rotated to a certain extent, and this causes the introduction of new porous structures that can have wide applications such as being used as scaffolds in tissue engineering. After evaluating the compressive mechanical properties of the samples, the same samples were heat treated, and then their compressive mechanical properties were also evaluated. The obtained results show that the maximum compressive strength and modulus occur in the sample with an extrusion width of 0.6 mm, layer height of 0.25 mm, wiggle filling pattern, and maximum filling percentage. The values ​​of compressive strength and modulus for the non-heat-treated sample are equal to 84.51 MPa and 2.28 GPa respectively and for the heat-treated sample, it is equal to 105.44 MPa and 2.29 GPa respectively.

کلیدواژه‌ها English

Additive Manufacturing
3D printer
Heat Treatment
Compressive Strength and Modulus
Printing Parameters
1. Akhoundi B. An evaluation of the shape-memory behavior and mechanical properties of polylactic acid/Ni80Cr20 continuous wire composite produced by extrusion-based additive manufacturing and in-melt simultaneous impregnation method. Journal of Reinforced Plastics and Composites. 2024;43(13-14):783-797. https://doi.org/10.1177/07316844231197036
2. Vieweger D, Diel S, Schweiger H-G, Tetzlaff U. Mechanical Properties of Raw Filaments and Printed Specimens: Effects of Fiber Reinforcements and Process Parameters. Polymers. 2024;16(11):1576. https://www.mdpi.com/2073-4360/16/11/1576
3. Akhoundi B, Khosravian E, Modanloo V. Deposition of continuous glass fibers on a curved surface by 3D printer based on fused filament fabrication technology. Iranian Journal of Manufacturing Engineering. 2024;10(11):16-23. https://doi.org/10.22034/ijme.2024.429126.1885 [In Persian]
4. Nabipour M, Behravesh AH, Akhoundi B. Effect of printing parameters on Mechanical Strength of Polymer-Metal composites Printed via FDM 3D printer. mdrsjrns. 2017;17(1):145-150. http://mme.modares.ac.ir/article-15-8030-en.html http://mme.modares.ac.ir/article-15-8030-en.html
5. Dvorak K, Zarybnicka L, Ševčík R, Vopalensky M, Adamkova I. 3D composite printing: study of carbon fiber incorporation to different construction thermoplastic matrices in regard to dilatation characteristics. Rapid Prototyping Journal. 2024;ahead-of-print(ahead-of-print). 10.1108/RPJ-12-2023-0450 https://doi.org/10.1108/RPJ-12-2023-0450
6. Baddour M, Fiorillo C, Trossaert L, Verberckmoes A, Ghekiere A, D’hooge DR, Cardon L, Edeleva M. Comparing Degradation Mechanisms, Quality, and Energy Usage for Pellet- and Filament-Based Material Extrusion for Short Carbon Fiber-Reinforced Composites with Recycled Polymer Matrices. Journal of Composites Science. 2024;8(6):222. https://www.mdpi.com/2504-477X/8/6/222
7. Bahrami B, Talebi H, Momeni MM, Ayatollahi MR. Experimental and theoretical investigation of the influence of post-curing on mixed mode fracture properties of 3d-printed polymer samples. Scientific Reports. 2024;14(1):13216. https://doi.org/10.1038/s41598-024-64136-y https://doi.org/10.1038/s41598-024-64136-y
8. Mousavi SM, Mousavi SM, Movahhedy MR. Investigating the influencing parameters on the surface roughness of polymer parts made by Fused Deposition Modeling with respect to laser polishing. Iranian Journal of Manufacturing Engineering. 2023;10(9):42-50. https://doi.org/10.22034/ijme.2024.437063.1921 [In Persian]
9. Safi Jahanshahi A. Experimental investigation of the compressive strength of polylactic acid/continuous glass fiber composite material produced with an extrusion-based 3D printer using the simultaneous impregnation system of fibers and polymer. Iranian Journal of Manufacturing Engineering. 2024:-. https://doi.org/10.22034/ijme.2024.442326.1929 [In Persian]
10. Bouguermouh K, Habibi M, Laperrière L, Li Z, Abdin Y. 4D-printed PLA-PETG polymer blends: comprehensive analysis of thermal, mechanical, and shape memory performances. Journal of Materials Science. 2024. 10.1007/s10853-024-09862-4 https://doi.org/10.1007/s10853-024-09862-4
11. Akhoundi B, Nabipour M, Hajami F, Shakoori D. An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High-Temperature Polylactic Acid in Fused Deposition Modeling. Polymer Engineering & Science. 2020;60(5):979-987. https://doi.org/10.1002/pen.25353
12. Ghasemkhani A, Pircheraghi G, Mehrabadi NR, Eshraghi A. Effects of heat treatment on the mechanical properties of 3D-printed polylactic acid: Study of competition between crystallization and interlayer bonding. Materials Today Communications. 2024:109266. https://doi.org/10.1016/j.mtcomm.2024.109266
13. Pernet B, Nagel JK, Zhang H. Compressive strength assessment of 3D printing infill patterns. Procedia CIRP. 2022;105:682-687. https://doi.org/10.1016/j.procir.2022.02.114
14. Dakhil GY, Salih RM, Hameed AM. Influence of infill pattern, infill ratio on compressive strength and hardness of 3D printed polylactic acid (PLA) based polymer. Journal of Applied Sciences and Nanotechnology. 2023;3(1):1-7. https://doi.org/10.53293/jasn.2022.4745.1141
15. Abdullah MA, Abbas TF. Investigation and prediction of the impact of FDM process parameters on mechanical properties of PLA prints. Engineering and Technology Journal. 2023;41(12):1465-1473. http://doi.org/10.30684/etj.2023.140389.1466
16. Bakhtiari H, Nikzad M, Tolouei-Rad M. Influence of three-dimensional printing parameters on compressive properties and surface smoothness of polylactic acid specimens. Polymers. 2023;15(18):3827. https://doi.org/10.3390/polym15183827
17. Yu W, Wang X, Yin X, Ferraris E, Zhang J. The effects of thermal annealing on the performance of material extrusion 3D printed polymer parts. Materials & Design. 2023;226:111687. https://doi.org/10.1016/j.matdes.2023.111687
18. Shbanah M, Jordanov M, Nyikes Z, Tóth L, Kovács TA. The Effect of Heat Treatment on a 3D-Printed PLA Polymer’s Mechanical Properties. Polymers. 2023;15(6):1587. https://doi.org/10.3390/polym15061587
19. Hasan MS, Ivanov T, Vorkapić M, Simonović A, Daou D, Kovačević A, Milovanović A. Impact of aging effect and heat treatment on the tensile properties of PLA (poly lactic acid) printed parts. Materiale Plastice. 2020;57(3):147-159. https://doi.org/10.37358/MP.20.3.5389
20. Nie T, Venkatesh VS, Golub S, Stok KS, Hemmatian H, Desai R, Handelsman DJ, Zajac JD, Grossmann M, Davey RA. Estradiol increases cortical and trabecular bone accrual and bone strength in an adolescent male-to-female mouse model of gender-affirming hormone therapy. Bone Research. 2024;12(1):1. 10.1038/s41413-023-00308-2 https://doi.org/10.1038/s41413-023-00308-2
21. Singh S, Deepak D, Aggarwal L, Gupta VK. Tensile and Flexural Behavior of Hemp Fiber Reinforced Virgin-recycled HDPE Matrix Composites. Procedia Materials Science. 2014;6:1696-1702. https://doi.org/10.1016/j.mspro.2014.07.155 https://www.sciencedirect.com/science/article/pii/S2211812814005203
22. Akhoundi B, Behravesh AH, Bagheri Saed A. An innovative design approach in three-dimensional printing of continuous fiber–reinforced thermoplastic composites via fused deposition modeling process: In-melt simultaneous impregnation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2020;234(1-2):243-259. https://doi.org/10.1177/0954405419843780
23. Kiński W, Pietkiewicz P. Influence of the printing nozzle diameter on tensile strength of produced 3D models in FDM technology. Agricultural Engineering. 2020;24(3):31-38. https://intapi.sciendo.com/pdf/10.1515/agriceng-2020-0024
24. Larsson J, Lindström P, Korin C, Ekengren J, Karlsson P, editors. The Influence of Nozzle Size on the Printing Process and the Mechanical Properties of FFF-Printed Parts. Industrializing Additive Manufacturing; 2024 2024; Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-42983-5_11
25. Akhoundi B, Behravesh AH. Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products. Experimental Mechanics. 2019;59(6):883-897. https://doi.org/10.1007/s11340-018-00467-y
26. Akhoundi B, Nabipour M, Hajami F, Band SS, Mosavi A. Calculating Filament Feed in the Fused Deposition Modeling Process to Correctly Print Continuous Fiber Composites in Curved Paths. Materials. 2020;13(20):4480. https://www.mdpi.com/1996-1944/13/20/4480
27. Akhoundi B, Nabipour M, Kordi O, Hajami F. Calculating printing speed in order to correctly print PLA/continuous glass fiber composites via fused filament fabrication 3D printer. Journal of Thermoplastic Composite Materials. 2023;36(1):162-181. 10.1177/0892705721997534 https://journals.sagepub.com/doi/abs/10.1177/0892705721997534