مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی جذب انرژی در لوله‌های فلزی جدار نازک مشبک با سلول‌های آگزتیک، نیمه درون‌رو و معمولی تحت بارگذاری محوری

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده
هدف از این پژوهش، بررسی تجربی جذب انرژی لوله‌های جدار نازک مشبک با مقطع مربعی است. دیواره‌های لوله‌ی جدار نازک به صورت مشبک با سه نوع سلول شامل آگزتیک درون‌‌رو، نیمه درون‌رو و لانه زنبوری معمولی از جنس فولاد زنگ نزن 304 است. هر سه نوع سلول‌ مشبک با روش برش لیزر دوّار روی لوله جدار نازک ایجاد و توسط دستگاه آزمایش یونیورسال تحت بارگذاری شبه-استاتیک با سرعت 5 میلی‌متر بر دقیقه به صورت محوری فشرده می­شوند. نیروی بیشینه اولیه، نیروی متوسط لهیدگی، راندمان نیروی لهیدگی، جذب انرژی و جذب انرژی ویژه به عنوان پارامترهای ارزیابی آزمون در نظر گرفته می­شوند. نتایج نشان می‌دهد که لوله جدار نازک با ساختار آگزتیک درون‌رو، جذب انرژی مخصوص بیشتری نسبت به دو ساختار دیگر دارد. در این ساختار جذب انرژی ویژه 25% نسبت به ساختار لانه زنبوری معمولی بیشتر است. ساختار نیمه درون‌رو، جذب انرژی و نیروی متوسط بیشتری نسبت به دو ساختار دیگر دارد. مقدار راندمان نیروی لهیدگی در ساختار لانه زنبوری معمولی 85% بدست می‌آید که نسبت به دو ساختار دیگر بیشتر است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Investigation on the Energy Absorption of Lattice Thin-Walled Metal Tubes with Auxetic, Semi-Re-Entrant, and Conventional Honeycomb Cells under Axial Loading

نویسندگان English

Mosayeb Najar
Rahmatollah Ghajar
Khajeh Nasir Toosi University of Technology
چکیده English

This research aims to experimentally investigate the energy absorption of thin-walled lattice tubes with a square section. The walls of the thin-walled tube are made in the form of a lattice with three types of cells: re-entrant auxetic, semi-re-entrant, and conventional honeycomb structures, and the material of the specimens is considered 304 stainless steels. All three types of lattice cells are produced by the rotary laser cutting method on a conventional tube and are axially compressed by a universal test machine under quasi-static loading at a 5 mm/min velocity. The test evaluation parameters are initial maximum force, mean crushing force, crushing force efficiency, energy absorption, and specific energy absorption. The results show that the thin-walled tube with the re-entrant auxetic structure has more specific energy absorption than the other two structures. The specific energy absorption of this structure is 25% higher than the conventional honeycomb structure. The semi-re-entrant structure has more energy absorption and mean crushing force than the other structures. The crushing force efficiency in the conventional honeycomb structure is higher than that of the other two structures, which has a value of 85%.

کلیدواژه‌ها English

Auxetic
Semi-Re-Entrant
specific energy
thin-walled tube
Quasi-Static
1. Lu G. Energy absorption of structures and materials. Cambridge, England: Woodhead Publishing; 2003.
2. Azimi MB, Asgari M. A new bi-tubular conical–circular structure for improving crushing behavior under axial and oblique impacts. Int J Mech Sci. 2016; 105:253–65.
3. Graciano C, Martínez G, Smith D. Experimental investigation on the axial collapse of expanded metal tubes. Thin-Walled Struct. 2009;47(8–9):953–61.
4. Chen L, Zhang J, Du B, Zhou H, Liu H, Guo Y, et al. Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load. Thin-Walled Struct. 2018; 127:333–43.
5. Wang Z, Hu H. Auxetic materials and their potential applications in textiles. Text Res J. 2014;84(15):1600–11.
6. Lakes R. Foam structures with a negative Poisson’s ratio. Science. 1987;235(4792):1038–40. Available from:
7. Hou X, Deng Z, Zhang K. Dynamic crushing strength analysis of auxetic honeycombs. Acta Mech Solida Sin. 2016;29(5):490–501.
8. Zhou Z, Zhou J, Fan H. Plastic analyses of thin-walled steel honeycombs with re-entrant deformation style. Mater Sci Eng A Struct Mater. 2017; 688:123–33.
9. Liu W, Wang N, Luo T, Lin Z. In-plane dynamic crushing of re-entrant auxetic cellular structure. Mater Des. 2016; 100:84–91.
10. Hu LL, Zhou MZ, Deng H. Dynamic crushing response of auxetic honeycombs under large deformation: Theoretical analysis and numerical simulation. Thin-Walled Struct. 2018; 131:373–84.
11. Najafi M, Ahmadi H, Liaghat G. Experimental and Numerical Investigation of Energy Absorption in Auxetic Structures under Quasi-static Loading. Modares Mechanical Engineering 2020; 20 (2) :415-424
12. Mohsenizadeh S, Alipour R, Shokri Rad M, Farokhi Nejad A, Ahmad Z. Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading. Mater Des. 2015; 88:258–68.
13. Olympio K, Gandhi F. Zero-v cellular honeycomb flexible skins for one-dimensional wing morphing. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics; 2007.
14. Grima JN, Oliveri L, Attard D, Ellul B, Gatt R, Cicala G, et al. Hexagonal honeycombs with zero Poisson’s ratios and enhanced stiffness. Adv Eng Mater. 2010;12(9):855–62.
15. Xu M, Xu Z, Zhang Z, Lei H, Bai Y, Fang D. Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies. Int J Mech Sci. 2019; 159:43–57.
16. Lee W, Jeong Y, Yoo J, Huh H, Park SJ, Park SH, et al. Effect of auxetic structures on crash behavior of cylindrical tube. Compos Struct. 2019; 208:836–46.
17. Guo Y, Zhang J, Chen L, Du B, Liu H, Chen L, et al. Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerosp Sci Technol. 2020;98(105662):105662.
18. Doudaran MO, Ahmadi H, Liaghat G. Crushing performance of auxetic tubes under quasi-static and impact loading. J Braz Soc Mech Sci Eng. 2022;44(6).
19. Kim JH, Cho DH, Choi SU, Cho CH, Kim KH. Energy absorption of square tubes with perforations in dynamic axial crush. Int J Precis Eng Manuf. 2021;22(4):567–77.
20. Sen R, Paul S, Choudhuri B. Investigation on wire electrical discharge machining of AISI 304 stainless steel. Mater Today. 2022; 62:1210–4.
21. Shi Y, Yan C, Zhou Y, Wu J, Wang Y, Yu S, et al. Materials for additive manufacturing. San Diego, CA: Academic Press; 2021.
22. Luo HC, Ren X, Zhang Y, Zhang XY, Zhang XG, Luo C, et al. Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression. Compos Struct. 2022;280(114922):114922.
23. Patidar D, Rana RS. The effect of CO2 laser cutting parameter on Mechanical & Microstructural characteristics of high strength steel-a review. Mater Today. 2018;5(9):17753–62.
24. Yu Y, Meng FY, Ding C, Lv JF, He L, Han JQ, et al. Low-cost laser cutting fabricated all-metallic metamaterial near-field focusing lens. Heliyon.2023; 9(3): e14401.