1. Lu G. Energy absorption of structures and materials. Cambridge, England: Woodhead Publishing; 2003.
2. Azimi MB, Asgari M. A new bi-tubular conical–circular structure for improving crushing behavior under axial and oblique impacts. Int J Mech Sci. 2016; 105:253–65.
3. Graciano C, Martínez G, Smith D. Experimental investigation on the axial collapse of expanded metal tubes. Thin-Walled Struct. 2009;47(8–9):953–61.
4. Chen L, Zhang J, Du B, Zhou H, Liu H, Guo Y, et al. Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load. Thin-Walled Struct. 2018; 127:333–43.
5. Wang Z, Hu H. Auxetic materials and their potential applications in textiles. Text Res J. 2014;84(15):1600–11.
6. Lakes R. Foam structures with a negative Poisson’s ratio. Science. 1987;235(4792):1038–40. Available from:
7. Hou X, Deng Z, Zhang K. Dynamic crushing strength analysis of auxetic honeycombs. Acta Mech Solida Sin. 2016;29(5):490–501.
8. Zhou Z, Zhou J, Fan H. Plastic analyses of thin-walled steel honeycombs with re-entrant deformation style. Mater Sci Eng A Struct Mater. 2017; 688:123–33.
9. Liu W, Wang N, Luo T, Lin Z. In-plane dynamic crushing of re-entrant auxetic cellular structure. Mater Des. 2016; 100:84–91.
10. Hu LL, Zhou MZ, Deng H. Dynamic crushing response of auxetic honeycombs under large deformation: Theoretical analysis and numerical simulation. Thin-Walled Struct. 2018; 131:373–84.
11. Najafi M, Ahmadi H, Liaghat G. Experimental and Numerical Investigation of Energy Absorption in Auxetic Structures under Quasi-static Loading. Modares Mechanical Engineering 2020; 20 (2) :415-424
12. Mohsenizadeh S, Alipour R, Shokri Rad M, Farokhi Nejad A, Ahmad Z. Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading. Mater Des. 2015; 88:258–68.
13. Olympio K, Gandhi F. Zero-v cellular honeycomb flexible skins for one-dimensional wing morphing. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics; 2007.
14. Grima JN, Oliveri L, Attard D, Ellul B, Gatt R, Cicala G, et al. Hexagonal honeycombs with zero Poisson’s ratios and enhanced stiffness. Adv Eng Mater. 2010;12(9):855–62.
15. Xu M, Xu Z, Zhang Z, Lei H, Bai Y, Fang D. Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies. Int J Mech Sci. 2019; 159:43–57.
16. Lee W, Jeong Y, Yoo J, Huh H, Park SJ, Park SH, et al. Effect of auxetic structures on crash behavior of cylindrical tube. Compos Struct. 2019; 208:836–46.
17. Guo Y, Zhang J, Chen L, Du B, Liu H, Chen L, et al. Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerosp Sci Technol. 2020;98(105662):105662.
18. Doudaran MO, Ahmadi H, Liaghat G. Crushing performance of auxetic tubes under quasi-static and impact loading. J Braz Soc Mech Sci Eng. 2022;44(6).
19. Kim JH, Cho DH, Choi SU, Cho CH, Kim KH. Energy absorption of square tubes with perforations in dynamic axial crush. Int J Precis Eng Manuf. 2021;22(4):567–77.
20. Sen R, Paul S, Choudhuri B. Investigation on wire electrical discharge machining of AISI 304 stainless steel. Mater Today. 2022; 62:1210–4.
21. Shi Y, Yan C, Zhou Y, Wu J, Wang Y, Yu S, et al. Materials for additive manufacturing. San Diego, CA: Academic Press; 2021.
22. Luo HC, Ren X, Zhang Y, Zhang XY, Zhang XG, Luo C, et al. Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression. Compos Struct. 2022;280(114922):114922.
23. Patidar D, Rana RS. The effect of CO2 laser cutting parameter on Mechanical & Microstructural characteristics of high strength steel-a review. Mater Today. 2018;5(9):17753–62.
24. Yu Y, Meng FY, Ding C, Lv JF, He L, Han JQ, et al. Low-cost laser cutting fabricated all-metallic metamaterial near-field focusing lens. Heliyon.2023; 9(3): e14401.