[1] Cristescu, A.C., Filip, I., Stefan, V., Popa, L., Ipate, G. and Voicu, G., 2022. CAR BRAKING SYSTEM–GENERAL ASPECTS IN A REVIEW. Acta Technica Corviniensis-Bulletin of Engineering, 15(2), pp.105-110. DOI: 2022-2/ACTA-2022-2-19
[2] R. Hoseinnezhad and A. Bab-Hadiashar, "Efficient antilock braking by direct maximization of tire–road frictions," IEEE transactions on industrial electronics, vol. 58, no. 8, pp. 3593-3600, 2010. DOI: 10.1109/TIE.2010.2081951
[3] C. Ahn, B. Kim, and M. Lee, "Modeling and control of an anti-lock brake and steering system for cooperative control on split-mu surfaces," International Journal of Automotive Technology, vol. 13, pp. 571-581, 2012. DOI:10.1007/s12239-012-0055-y
[4] Golmohammadi M H, Mirzaei M, Najjari B. Design of Anti-lock Braking System Compatible with Different Road Conditions for Trucks. Modares Mechanical Engineering 2015; 15 (9) :371-380. (In Persion.)
[5] M. Choi, J. J. Oh, and S. B. Choi, "Linearized recursive least squares methods for real-time identification of tire–road friction coefficient," IEEE Transactions on Vehicular Technology, vol. 62, no. 7, pp. 2906-2918, 2013. DOI: 10.1109/TVT.2013.2260190
[6] Y. Shi, B. Li, J. Luo, and F. Yu, "A practical identifier design of road variations for anti-lock brake system," Vehicle system dynamics, vol. 57, no. 3, pp. 336-368, 2019. DOI: 10.1080/00423114.2018.1467018
[7] H. Koylu and E. Tural, "Experimental study on braking and stability performance during low speed braking with ABS under critical road conditions," Engineering Science and Technology, an International Journal, vol. 24, no. 5, pp. 1224-1238, 2021. DOI: 10.1016/j.jestch.2021.02.001
[8] Hosseini Salari; Mirzaei Nejad Improving the performance of anti-lock braking system by considering the turning dynamics and longitudinal slip reference model based on neural network. Iranian Mechanical Engineering Journal, 2024. (In Persion.) DOI:10.30506/ijmep.2024.2008068.1946
[9] S. Rajendran, S. K. Spurgeon, G. Tsampardoukas, and R. Hampson, "Estimation of road frictional force and wheel slip for effective antilock braking system (ABS) control," International Journal of Robust and Nonlinear Control, vol. 29, no. 3, pp. 736-765, 2019. DOI: 10.1002/rnc.4366
[10] Azizi M, Mirzaei M, Falahati nodeh T, Rafatnia S. Constrained Nonlinear Estimation of Road Friction Coefficient and Wheel Slip for Control of Anti-Lock Braking System. JoC 2021; 15 (1) :67-78(In Persion.)
[11] Bhandari, Rishabh, Sangram Patil, and Ramesh K. Singh. "Surface prediction and control algorithms for anti-lock brake system." Transportation research part C: emerging technologies 21, no. 1 (2012): 181-195. DOI: 10.1016/j.trc.2011.09.004
[12] Gaurkar, P. V., Ramakrushnan, K., Challa, A., Subramanian, S. C., Vivekanandan, G., & Sivaram, S. (2022). An anti-lock braking system algorithm using real-time wheel reference slip estimation and control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 236(4), 676-688. DOI: 10.1177/09544070211024083
[13] Y. Liu, & J. Sun, Target slip tracking using gain scheduling for anti-lock braking systems. In Proceedings of the American Control Conference, Vol. 2, pp. 1178-1182, 1995. DOI: 10.1109/ACC.1995.520935
[14] H. John, L. L. E. Johnston, and G. Scharpf, Measurement of tire brake force characteristics as related to wheel slip (anti-lock) control system design. No. 690214. SAE Technical Paper, 1969. DOI: 10.4271/690214
[15]W. Y. Wang, G. M. Chen, and C. W. Tao, Stable anti-lock braking system using output-feedback direct adaptive fuzzy neural control, IEEE International Conference on Systems, Man and Cybernetics, Vol. 4, pp. 3675-3680, 2003. DOI: 10.1109/ICSMC.2003.1244460
[16]K. T. Leung, J. F. Whidborne, D. Purdy, and P. Barber, Road vehicle state estimation using low-cost GPS/INS. Mechanical Systems and Signal Processing, Vol. 25, No. 6, pp. 1988-2004, 2011. DOI: 10.1016/j.ymssp.2010.08.003
[17]H. Guo, H. Chen, F. Xu, F. Wang, and G. Lu, Implementation of EKF for vehicle velocities estimation on FPGA. IEEE Transactions on Industrial Electronics, Vol. 60, No. 9, pp. 3823-3835, 2013. DOI: 10.1109/TIE.2012.2208436
[18] B. moaveni, M. Khosravi Roqaye Abad, S. Nasiri, M. Amiri, vehicle longitudinal velocity estimation using two new estimators and without measuring the braking torque, Modares Mechanical Engineering, Vol. 14, No. 5, pp. 183-193, 2014 (In Persion.) DOR: 20.1001.1.10275940.1393.14.5.8.5
[19] C. Canudas-De-Wit, and R. Horowitz, Observers for tire/road contact friction using only wheel angular velocity information, In Proceedings of the 38th Conference on Decision and Control, Vol. 8, pp. 3932-3937, 1999. DOI: 10.1109/CDC.1999.827973
[20] C. Canudas-de-Wit, P. Tsiotras, E. Velenis, M. Basset, and G. Gissinger, "Dynamic friction models for road/tire longitudinal interaction," Vehicle System Dynamics, vol. 39, no. 3, pp. 189-226, 2003. DOI: 10.1076/vesd.39.3.189.14152
[21] G. Baffet, A. Charara, and G. Dherbomez, "An observer of tire–road forces and friction for active security vehicle systems," IEEE/ASME Transactions on Mechatronics, vol. 12, no. 6, pp. 651-661, 2007. DOI: 10.1109/TMECH.2007.910099
[22] X. Zhang, Y. Xu, M. Pan, and F. Ren, "A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre/road friction coefficient estimations," Vehicle System Dynamics, vol. 52, no. 4, pp. 475-503, 2014. DOI: 10.1080/00423114.2013.864775
[23] S. Drakunov, U. Özgüner, P. Dix, and B. Ashrafi, ABS control using optimum search via sliding modes, IEEE Transactions on Control SystemsTechnology, Vol. 3, No. 1, pp. 79-85, 1995. DOI: 10.1109/87.370698
[24] G. M. Chen, W. Y. Wang, T. T. Lee, & C. W.Tao, Observer-based direct adaptive fuzzy-neural control for anti-lock braking systems, International Journal of Fuzzy Systems, Vol. 8, No. 4, pp. 208-218, 2006. DOI: 10.30000/IJFS.200612.0005
[25]W. Y. Wang, I. H. Li, M. C. Chen, S. F. Su, and S.B. Hsu, Dynamic Slip_Ratio Estimation and Control of Antilock Braking Systems Using an Observer_Based Direct Adaptive Fuzzy_Neural Controller, IEEE Transactions on Idustrial Electronics, Vol. 56, No. 5, pp. 1746-1756, 2009. DOI: 10.1109/TIE.2008.2009439
[26]J. Song, "Development and comparison of integrated dynamics control systems with fuzzy logic control and sliding mode control," Journal of Mechanical science and Technology, vol. 27, pp. 1853-1861, 2013. DOI: 10.1007/s12206-013-0436-9
[27]Y. Fang, L. Chu, W. Sun, M. Shang, F. Zhou, and J. Guo, "Identification and control of split-μ road for antilock braking system," in 2010 2nd International Conference on Advanced Computer Control, 2010, vol. 3: IEEE, pp. 298-301. DOI: 10.1109/ICACC.2010.5486616