[1] Alhussein A, Capelle J, Gilgert J, Tidu A, Hariri S, Azari Z. Static, dynamic and fatigue characteristics of the pipeline API 5L X52 steel after sandblasting. Engineering Failure Analysis. 2013;27:1-15.
[2] Slifka AJ, Drexler ES, Nanninga NE, Levy YS, McColskey JD, Amaro RL, Stevenson AE. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment. Corrosion Science. 2014;78:313-321.
[3] Bandara CS, Siriwardane SC, Dissanayake UI, Dissanayake R. Developing a full range S–N curve and estimating cumulative fatigue damage of steel elements. Computational Materials Science. 2015;96:96-101.
[4] Herrera DA, Albiter A, Cuamatzi-Meléndez R, Terán G, Ochoa-Ruiz G. Fracture-Toughness and Fatigue Crack Growth Evaluation in the Transversal Direction of the Longitudinal Weld of an API X52 Steel Pipeline. Journal of Testing and Evaluation. 2018;46(5):2110-2120.
[5] Mohtadi-Bonab MA, Eskandarib M, Sanayeic M, Dasd S. Microstructural Aspects of Intergranular and Transgranular Crack Propagation in an API X65 Steel Pipeline Related To Fatigue Failure. Engineering Failure Analysis. 2018;94:214-225.
[6] Nguyen TT, Heo HM, Park J, Nahm SH, Beak UB. Fracture Properties and Fatigue Life Assessment of API X70 Pipeline Steel Under the Effect of an Environment Containing Hydrogen. Journal of Mechanical Science and Technology. 2021;4(35):1445-1455.
[7] Farhad Fh, Smyth-Boyle D, Zhang X. Fatigue of X65 Steel in the Sour Corrosive Environment—A Novel Experimentation and Analysis Method for Predicting Fatigue Crack Initiation Life From Corrosion Pits. Fatigue & Fracture of Engineering Materials & Structures. 2021;44(5):1195-1208.
[8] Tavid M, Hashemi SH. Endurance Limit Determination of Weld Metal of API X65 Gas Pipeline Steel. Modares Mechanical Engineering. 2022;23(01):33-44. [In Persian]
[9] Hashemi SH, Mohammadyani D. Characterisation of Weldment Hardness, Impact Energy and Microstructure IN API X65 Steel. International Journal of Pressure Vessels and Piping. 2012;98:8-15.
[10] Hashemi SH, Kimiyabakhsh M. Experimental and Numerical Determination of Fracture Toughness in Gas Pipeline Steel of Grade API X65. Amirkabir Journal of Science & Research. 2013;45(2):1-9. [In Persian]
[11] Specification for Line Pipe, API Specification 5L, 45th Edition. USA: American Petroleum Institute; 2013.
[12] Hashemi SH. Strength–Hardness Statistical Correlation in API X65 Steel. Materials Science and Engineering A. 2011;528:1648-1655.
[13] Farrahi A, Hashemi SH. Experimental Evaluation of Fracture Toughness in Spiral Seam Weld of Thermo-Mechanical Steel. Journal of Solid and Fluid Mechanics. 2012;2(4):25-35. [In Persian]
[14] Metallic Materials—Rotating Bar Bending Fatigue Testing. Switzerland: International Organization for Standardization (ISO); 2010.
[15] Geometrical Product Specifications (GPS)- Surface texture: Profile method- Terms, Definitions and Surface Texture Parameters. Switzerland: International Organization for Standardization (ISO); 1997.
[16] Barbosa JF, Correia JA, Júnior RF, Zhu SP, Jesus AMD. Probabilistic S-N Fields Based on Statistical Distributions Applied to Metallic and Composite Materials: State of the Art. Advances in Mechanical Engineering. 2019;11(8):1-22.
[17] Gope PC. Determination of Minimum Number of Specimens in S-N Testing. Journal of Engineering Materials and Technology. 2002;124(4):421-427.
[18] Metallic materials — Fatigue testing — Statistical Planning and Analysis of Data. Switzerland: International Organization for Standardization (ISO); 2003.
[19]Strzelecki P, Sempruch J, Tomaszewski T. Analysis of Selected Mathematical Models of High-Cycle S-N Characteristics. Technical Sciences. 2017;20(3):227-240.
[20] Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data. West Conshohocken, United States: ASTM International; 2015.
[21] Bassoli E, Denti L, Comin A, Sola A, Tognoli E. Fatigue Behavior of As-Built L-PBF A357.0 Parts. Metals. 2018;8(8):634-647.
[22] Pilkey WD. Peterson's Stress Concentration Factors. 2nd Edition. Canada: John Wiley & Sons, Inc.; 1997.
[23] Budynas RG, Nisbett JK. Fatigue Failure Resulting from Variable Loading. In: Lange M, editor. Shigley’s Mechanical Engineering Design. 9th Edition. New York, USA: McGraw-Hill; 2011. p. 273-295.
[24] Farhad F, Zhang X, Smyth-Boyle D. Fatigue Behaviour of Corrosion Pits in X65 Steel Pipelines. Journal of Mechanical Engineering Science. 2019;233(5):1771-1782.
[25] Hong SW, Koo JM, Seok CS, Kim JW, Kim JH, Hong SK. Fatigue Life Prediction For an API 5L X42 Natural Gas Pipeline. Engineering Failure Analysis. 2015;56:396-402.
[26] Hanafi ZH, Jamaludin N, Abdullah S, Yusof MF, Zain MS. Acoustic Emission Study of Corrosion Fatigue and Fatigue for API 5L X70 Gas Pipeline Steel. Applied Mechanics and Materials. 2012;138-139:635-639.
[27] Zhao ZP, Qiao GY, Tang L, Zhu HW, Liao B, Xiao FR. Fatigue Properties of X80 Pipeline Steels With Ferrite/Bainite Dual-Phase Microstructure. Materials Science & Engineering A. 2016;657:96-103.