[1] K. Blankenbach, What is a Display? An Introduction to Visual Displays and Display Systems. In: J. Chen, W. Cranton, M. Fihn, (Eds.), Handbook of Visual Display Technology, pp. 1–22, Cham: Springer International Publishing, 2016.
[2] C. H. Park, S. J. Lee, T.H. Lee, H. J. Kim, Characterization of an acrylic pressure-sensitive adhesive blended with hydrophilic monomer exposed to hygrothermal aging: Assigning cloud point resistance as an optically clear adhesive for a touch screen panel, Reactive and Functional Polymers, Vol. 100, pp. 130–141, 2016.
[3] C. H. Park, S. J. Lee, T.H. Lee, H. J. Kim, Characterization of an acrylic polymer under hygrothermal aging as an optically clear adhesive for touch screen panel, International Journal of Adhesion and Adhesives, Vol. 63, pp. 137–44, 2015.
[4] Y. Jia, Z. Liu, D. Wu, J. Chen, H. Meng, Mechanical simulation of foldable AMOLED panel with a module structure, Organic Electronics, Vol. 65, pp. 185–192, 2019.
[5] Y. Shi, J. A. Rogers, C. Gao, Y. Huang, Multiple Neutral Axes in Bending of a Multiple-Layer Beam With Extremely Different Elastic Properties, Journal of applied mechanics, Vol. 81, No. 11, pp. 114501, 2014.
[6] Y. Kaneko, M. Yamaguchi, H. Matsuya, T. Tsukada, Foldable-display systems as a standard platform for multimedia use, IEEE Transactions on Consumer Electronics, Vol. 42, pp. 17–21, 1996.
[7] H. Tian, Y. Yang, D. Xie, T. L. Ren, Y. Shu, C. J. Zhou, et al., A novel flexible capacitive touch pad based on graphene oxide film, Nanoscale, Vol. 3, pp. 825–1236, 2013.
[8] H. Zhou, J. W. Park, The effects of compressive stress on the performance of organic light-emitting diodes, Organic Electronics, Vol. 24, pp. 272–279, 2015.
[9] M. M. Azrain, G. Omar, M. R. Mansor, S. H. S. M. Fadzullah, L. M. Lim, Failure mechanism of organic light emitting diodes (OLEDs) induced by hygrothermal effect, Optical Materials, Vol. 91, pp. 85–92, 2019.
[10] I. K. Mohammed, M. N. Charalambides, A. J. Kinloch, Modeling the effect of rate and geometry on peeling and tack of pressure-sensitive adhesives, Journal of Non-Newtonian Fluid Mechanics, Vol. 233, pp. 85-94, 2016.
[11] W. Luo, W. Chen, D. Liu, X. Huang, B. Ma, Predictive mechanistic model for single-layered pressure-sensitive adhesive (PSA) joints: Part I: Uniaxial tensile stress-strain response, The European Physical Journal E, Vol. 43, 2020.
[12] W. Luo, W. Chen, D. Liu, X. Huang, B. Ma, Efect of temperature and humidity on mechanical properties and constitutive modeling of pressure‑sensitive adhesives, Scientific Reports, Vol. 14, pp. 14634, 2024.
[13] F. Salmon, A. Everaerts, C. Campbell, B. Pennington, B. Erdogan-Haug, G. Caldwell, Modeling the Mechanical Performance of a Foldable Display Panel Bonded by 3M Optically Clear Adhesives, SID (Society for Information Display), Vol. 48, pp. 938–941, 2017.
[14] Y. Anani, G. H. Rahimi, Modeling of hyperelastic behavior of functionally graded rubber under mechanical and thermal load, Modares Mechanical Engineering, Vol. 15, No. 11, pp. 359-367, 2016. (In Persian)
[15] A. R. Esmaeili, M. Keshavarz, A. Mojar, Optimization of hyperelastic model parameters of soft tissue based on genetic algorithm utilizing experimental mechanical dataset, Modares Mechanical Engineering, Vol. 15, No. 9, pp. 134-140, 2016. (In Persian)
[16] S. Mapari, S. Mestry, S. T. Mhaske, Developments in pressure-sensitive adhesives: A review, Polymer Bulletin, Vol. 78, pp. 4075–4108, 2021.
[17] E. Shafiei, M. S. Kiasat, A new viscoplastic model and experimental characterization for thermosetting resins, Polymer Testing, Vol. 84, pp. 106389, 2020.
[18] L. M. Jean, Handbook of Materials Behavior Models, Three-Volume Set, Nonlinear Models and Properties, 2001.
[19] T. Liu, Z. Ye, B. Yu, W. Xuan, Kang J, Chen J. Biomechanical behaviors and visco-hyperelastic mechanical properties of human hernia patches with polypropylene mesh, Mechanics of Materials, Vol. 176, pp. 104529, 2023.
[20]9R. B. M. Talesh, P. M. Keshtiban, A. E. Oskui, Investigation of mode-I fracture behavior by essential work of fracture during the single-point incremental forming process, Engineering Failure Analysis, Vol. 154, pp. 107677, 2023.
[21] G. Marckmann, E. Verron, Efficiency of hyperelastic models for rubber-like materials, in book: Constitutive Models for Rubber IV (pp.375-380), 2022.
[22] S. Michael, ABAQUS/Standard User’s Manual, Version 6.14 documentation Dassault Syst, Pawtucket, United States: Simulia Corp, 2014.
[23] S. Jemioło, M. Gajewski,R. Szczerba Zastosowanie hipersprężystości i MES w modelowaniu mostowych łożysk elastomerowych, In book: Współczesna mechanika konstrukcji w projektowaniu inżynierskim, pp. 99-122, 2015.
[24] O. H. Yeoh, Some Forms of the Strain Energy Function for Rubber, Rubber Chemistry and Technology, Vol. 66, pp. 754–771, 1993.
[25] M. Kaliske, H. Rothert, On the finite element implementation of rubber‐like materials at finite strains, Engineering Computations, Vol. 14, No. 2, pp. 216–32, 1997.
[26] M. M. Nath, G. Gupta, Modeling the Mechanical Performance of Bendable Display under Cyclic Loading, IEEE International Flexible Electronics Technology Conference (IFETC), pp. 1–5, 2019.
[27] PolymerFEM. MCalibration and PolymerFEM User Manual, Polym LLC, n.d., 2020.
[28] ASTM D1002, Apparent Shear Strength of Single-Lap Joint Adhesively Bonded Metal Specimens, 2019.
[29] L. Tong, G. P. Steven, Analysis and Design of Structural Bonded Joints. 1st ed. Kluwer Academic, Boston: Springer New York, NY, 1999.
[30] R. Kottner, J. Kocáb, J. Heczko, J. Krystek, Investigation of the mechanical properties of a cork/rubber composite, Materials and Technologies, Vol. 50, pp. 579–583, 2016.
[31] J. Bergström, Some Forms of the Strain Energy Function for Rubber, First edition. United States of America, Elsevier: Matthew Deans, 2015.
[32] D. Weipert, Determining Rheological Properties of Cereal Products Using Dynamic Mechanical Analysis in Compression Mode’ in Cereal Foods World, Vol. 42, pp. 132–137, 1997.
[33] T. Mezger, The Rheology Handbook: For users of rotational and oscillatory rheometers, 4th Edition, Vincentz Network, 2014.
[34] P. Provenzano, R. Lakes, T. Keenan, R. vanderby, Nonlinear Ligament Viscoelasticity, Annals of Biomedical Engineering, Vol. 29, pp. 908–914, 2001.
[35] X. Shi, S. Jiang, L. Yang, M. Tang, D. Xiao, Modeling the viscoelasticity of shale by nanoindentation creep tests, International Journal of Rock Mechanics and Mining Sciences, Vol. 127, pp. 104210, 2020.
[36] H. F. Brinson, L. C. Brinson, Polymer Engineering Science and Viscoelasticity An Introduction, Springer Science+Business Media, LLC; 2008.
[37] ISO 6721-10 2015.
[38] Y. C. Lou, R. A. Schapery, Viscoelastic Characterization of a Nonlinear Fiber-Reinforced Plastic, Journal of Composite Materials, Vol. 5, pp. 208–234, 1971.
[39] B. P. Reis, L. M. Nogueira, D. A. Castello, L. A. Borges, A visco-hyperelastic model with Mullins effect for polyurethane elastomers combining a phenomenological approach with macromolecular information, Mechanics of Materials, Vol. 161, pp. 104023, 2021.
[40] G. Casella, L. B. Roger, Statistical Inference, Second, Andover Melbourne Mexico City Stamford, CT Toronto Hong Kong New Delhi Seoul Singapore Tokyo: CENGAGE INDIA, 2002.