مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی تاثیر نرخ پیشروی و عمق برش بر نیروی برشی، دمای براده، زبری و تغییرات میکروسختی سطح قطعه‌کار در تراشکاری به کمک لیزر و مقایسه با تراشکاری سنتی واسپالوی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه بیرجند
2 دانشگاه نیشابور
3 دانشگاه صنعتی شریف
4 مرکز آموزش عالی محلات
چکیده


ماشین‌کاری مواد سخت به ویژه سوپرآلیاژهای پایه نیکل‌ با فرآیندهای براده برداری سنتی همچنان به‌ عنوان یک چالش در نظر گرفته می‌شود، ویژگی‌های خاص این مواد اغلب منجر به سایش سریع ابزار و کاهش یکپارچگی سطح می‌شوند. به همین دلیل، ترجیح داده می‌شود که فرآیندهای ماشین‌کاری سنتی با فناوری‌های دیگر ترکیب شوند تا مشکلات ماشین‌کاری این مواد برطرف شوند. ماشین‌کاری به کمک لیزر با گرم کردن موضعی و نرم کردن مواد قطعه‌کار قبل از برش امکان براده‌برداری کارآمدتری را نسبت به شرایط مرسوم فراهم می‌کند. در این پژوهش، با مقایسه تراشکاری به کمک لیزر و تراشکاری سنتی بر روی سوپرآلیاژ واسپالوی تأثیر پارامترهای ماشین‌کاری در سرعت دورانی ثابت (400 دور بر دقیقه)، نرخ پیشروی (035/0، 07/0 و105/0 میلی‌متر بر دور) و عمق برش (3/0، 6/0 و 9/0 میلی‌متر) بر نیروی برش، دمای براده، زبری سطح و تغییرات میکروسختی روی سطح قطعه‌کار‌ مورد بررسی قرار گرفت. از لیزر فیبری با توان ثابت 500 وات و فاصله زاویه‌ای تماس پرتو لیزر با نوک ابزار برابر با 60 درجه استفاده شد. سختی اولیه قطعه‌کار 385 ± 10 ویکرز و قطر آن 25 میلی‌متر بود. نتایج نشان داد که استفاده از لیزر در مقایسه با تراشکاری سنتی، باعث کاهش نیروی برش به مقدار 16% شد. دمای براده در تراشکاری با لیزر نسبت به تراشکاری سنتی بیشتر بود. کاهش نیروی ماشین‌کاری و افزایش دما باعث افزایش کیفیت زبری سطح به مقدار 42% شد. در تراشکاری به کمک لیزر دامنه تغییرات میکروسختی در سطح قطعه‌کار کمتر از تراشکاری سنتی بود. نتایج نشان داد افزایش سرعت اسکن حرارت لیزر روی سطح قطعه‌کار باعث کاهش ضخامت ناحیه تحت تاثیر دمای لیزر در زیر سطح قطعه‌کار شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

An Empirical Study on the Effect of Feed Rate and Cutting Depth on the Cutting Force, Chip Temperature, Surface Roughness, and Microhardness Variation in Laser-Assisted Turning Compared to Conventional Turning of Waspaloy

نویسندگان English

Hamid Reza Esrafili 1
Hosien Amirabadi 2
Javad Akbari 3
Farshid Jafarian 4
1 University of Birjand
2 University of Neyshabur
3 Sharif University of Technology
4 Mahallat Institute of Higher Education
چکیده English



The conventional material removal processes have always run into difficulties in machining hard materials, and nickel-based superalloys are no exception. The inherent properties of these materials usually lead to high tool wear rates and low surface integrity. These concerns justify the need for combining conventional material removal processes with advanced technologies. Laser Assisted Machining is one such process by which, through localized softening of work material prior to the cutting operation, a more efficient material removal process can be realized compared with what can be done by conventional machining. This work studies the effect of machining parameters such as constant Rotational speed at 400 RPM, feed rates of 0.035, 0.07, 0.105 mm/rev, and cutting depths of 0.3, 0.6, and 0.9 mm on variation of cutting force, chip temperature, surface roughness, and microhardness in variation of the workpiece surface. The process is a Laser Assisted Turning (LAT) process compared to conventional Turning (CT) by analyzing the parameters for a Waspaloy. A fiber laser with constant power output of 500 W was used to irradiate the tool material. The angle of contact of the beam with the tip of the tool was fixed at 60°. The workpiece's hardness was 385 ± 10 Vickers initially and had a diameter of 25 mm. It has been revealed that the application of LAT decreases the cutting force up to 16% compared to CT. The workpiece surfaces produced by LAT had higher chip temperatures than CT and were of 42% better quality in terms of surface roughness. In the LAT process, the difference in microhardness values at different points on the workpiece surface was within a much smaller range than in the CT process. The results showed that as the scanning speed of the laser increased on the surface of the workpiece, the thickness of the laser heat-affected zone below the surface of the workpiece decreased.

کلیدواژه‌ها English

Laser Assisted Machining (LAM)
Cutting forces
Surface roughness
Chip Temperature
Microhardness
[1] K. You, G. Yan, X. Luo, M. D. Gilchrist, and F. Fang, "Advances in laser assisted machining of hard and brittle materials," Journal of Manufacturing Processes, vol. 58, pp. 677-692, 2020.
[2] A. del Prete, A. A. de Vitis, L. Filice, S. Caruso, and D. Umbrello, "Tool engage investigation in nickel superalloy turning operations," in Key Engineering Materials, 2012, pp. 1305-1310.
[3] N. Bharat and P. Bose, "An overview on machinability of hard to cut materials using laser assisted machining," Materials Today: Proceedings, vol. 43, pp. 665-672, 2021.
[4] S. Imbrogno, S. Rinaldi, D. Umbrello, L. Filice, R. Franchi, and A. Del Prete, "A physically based constitutive model for predicting the surface integrity in machining of Waspaloy," Materials & Design, vol. 152, pp. 140-155, 2018.
[5] S. Olovsjö and L. Nyborg, "Influence of microstructure on wear behaviour of uncoated WC tools in turning of Alloy 718 and Waspaloy," Wear, vol. 282, pp. 12-21, 2012.
[6] J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders, and S. B. Warner, The science and design of engineering materials: Irwin Chicago, 1995.
[7] A. Del Prete, T. Primo, and R. Franchi, "Super-nickel orthogonal turning operations optimization," Procedia CIRP, vol. 8, pp. 164-169, 2013.
[8] K. Venkatesan, R. Ramanujam, and P. Kuppan, "Laser assisted machining of difficult to cut materials: research opportunities and future directions-a comprehensive review," Procedia Engineering, vol. 97, pp. 1626-1636, 2014.
[9] J. Zhang, Z. Zheng, K. Huang, C. Lin, W. Huang, X. Chen, et al., "Field-assisted machining of difficult-to-machine materials," International Journal of Extreme Manufacturing, vol. 6, p. 032002, 2024.
[10] M. Anderson, R. Patwa, and Y. C. Shin, "Laser-assisted machining of Inconel 718 with an economic analysis," International Journal of Machine Tools and Manufacture, vol. 46, pp. 1879-1891, 2006.
[11] S. T. Manshadi, "Laser Assisted Machining of Inconel 718 Superalloy," McGill University Montréal, 2009.
[12] G. Chryssolouris, N. Anifantis, and S. Karagiannis, "Laser assisted machining: an overview," Journal of manufacturing science and engineering, vol. 119, pp. 766-769, 1997.
[13] R. R. Rashid, S. Sun, S. Palanisamy, G. Wang, and M. Dargusch, "A study on laser assisted machining of Ti10V2Fe3Al alloy with varying laser power," The International Journal of Advanced Manufacturing Technology, vol. 74, pp. 219-224, 2014.
[14] A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, and D. Larrouquere, "Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools," Wear, vol. 262, pp. 931-942, 2007.
[15] A. R. Motorcu, A. Kuş, and I. Durgun, "The evaluation of the effects of control factors on surface roughness in the drilling of Waspaloy superalloy," Measurement, vol. 58, pp. 394-408, 2014.
[16] D. Xu, Z. Liao, D. Axinte, J. A. Sarasua, R. M'Saoubi, and A. Wretland, "Investigation of surface integrity in laser-assisted machining of nickel based superalloy," Materials & Design, vol. 194, p. 108851, 2020.
[17] G. Germain, J.-L. Lebrun, T. Braham-Bouchnak, D. Bellett, and S. Auger, "Laser-assisted machining of Inconel 718 with carbide and ceramic inserts," International journal of material forming, vol. 1, pp. 523-526, 2008.
[18] H. Attia, S. Tavakoli, R. Vargas, and V. Thomson, "Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions," CIRP annals, vol. 59, pp. 83-88, 2010.
[19] H. Ding and Y. C. Shin, "Improvement of machinability of Waspaloy via laser-assisted machining," The International Journal of Advanced Manufacturing Technology, vol. 64, pp. 475-486, 2013.
[20] K. Venkatesan, R. Ramanujam, and P. Kuppan, "Parametric modeling and optimization of laser scanning parameters during laser assisted machining of Inconel 718," Optics & Laser Technology, vol. 78, pp. 10-18, 2016.
[21] K. Venkatesan, "The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd: YAG laser source," Journal of advanced research, vol. 8, pp. 407-423, 2017.
[22] S. A. Tadavani, R. S. Razavi, and R. Vafaei, "Pulsed laser-assisted machining of Inconel 718 superalloy," Optics & Laser Technology, vol. 87, pp. 72-78, 2017.
[23] Z. Sharifi, R. Shoja-Razavi, R. Vafaei, and S. H. Hashemi, "Nd: YAG Pulsed Laser Assisted Machining of AMS 5708 Waspaloy Alloy," Lasers in Manufacturing and Materials Processing, vol. 5, pp. 16-30, 2018.
[24] S. International, "SAE International, Aerospace Material Specification AMS 5708L, 2015.," in. ed, 2015.
[25] D. Umbrello, L. Filice, S. Rizzuti, and F. Micari, "On the evaluation of the global heat transfer coefficient in cutting," International Journal of Machine Tools and Manufacture, vol. 47, pp. 1738-1743, 2007.
[26] E. Ezugwu, Z. Wang, and A. Machado, "The machinability of nickel-based alloys: a review," Journal of Materials Processing Technology, vol. 86, pp. 1-16, 1999.
[27] B. Paramasivam, "Investigation on the effects of damping over the temperature distribution on internal turning bar using Infrared fusion thermal imager analysis via SmartView software," Measurement, vol. 162, p. 107938, 2020.
[28] R. Polvorosa, A. Suárez, L. L. de Lacalle, I. Cerrillo, A. Wretland, and F. Veiga, "Tool wear on nickel alloys with different coolant pressures: Comparison of Alloy 718 and Waspaloy," Journal of Manufacturing Processes, vol. 26, pp. 44-56, 2017.
[29] M. Davies, A. Cooke, and E. Larsen, "High bandwidth thermal microscopy of machining AISI 1045 steel," CIRP annals, vol. 54, pp. 63-66, 2005.
[30] F. Jafarian, H. Amirabadi, and M. Fattahi, "Improving surface integrity in finish machining of Inconel 718 alloy using intelligent systems," The International Journal of Advanced Manufacturing Technology, vol. 71, pp. 817-827, 2014.
[31] I. Jawahir, E. Brinksmeier, R. M'saoubi, D. Aspinwall, J. Outeiro, D. Meyer, et al., "Surface integrity in material removal processes: Recent advances," CIRP annals, vol. 60, pp. 603-626, 2011.