مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدل سازی عددی میکروپمپ پیزوالکتریک

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه تهران
2 دانشگاه علم و صنعت ایران
چکیده
هدف: پیشرفت ها در تکنولوژی‌های میکرو الکترومکانیکی (MEMS) طی چند دهه گذشته به توسعه سریع طیف وسیعی از دستگاه‌های میکرو فلوئیدیک با عملکردهای مختلف کمک کرده است از میان دستگاه‌های مختلفی که پیشنهادشده‌اند، میکرو پمپ‌ها که انرژی لازم برای راندن سیالات را از طریق سیستم‌های میکرو فلوئیدیک فراهم می‌کنند؛ بنابراین در پژوهش حاضر قصد براین است تا به‌طور پارامتری اثرات پارامترهای اصلی، یعنی طول، عرض و زاویه حمله سوپاپ‌ها، طول پیزوالکتریک و ولتاژ اعمال‌شده را موردبررسی قرار گیرد. روش: رویکرد پژوهش حاضر کاربردی محور و تحلیلی -آزمایشی با شبیه‌سازی‌های عددی که نیروی کشش و معادلات با استفاده از الگوریتم کاملاً کوپل شده درنرم افزار COMSOL Multiphysics محاسبه می‌شوند. یافته‌ها: نتایج حاصل از پژوهش حاضر نشان می‌دهد پارامترهای اصلی به‌طور قابل‌توجهی عملکرد میکرو پمپ طراحی‌شده را تحت تأثیر قرار می‌دهند.به طوری که ولتاژ اعمال‌شده ۴۰۰ ولت، زاویه حمله ۴۵ درجه و عرض شیرها ۶میکرومتر،به ترتیب برای طول پیزوالکتریک ۴،۲و۵ میلی متر دبی جریان6/0، 9/6 و6/16 میکرو لیتر بر دقیقه به دست می‌آید. برای عرض‌های شیر ۶ و۸میکرومتر، زاویه‌های حمله بهینه ۶۰ و ۶۵ درجه ، دبی مربوطه به ترتیب 1/11 و9/5 میکرو لیتر در دقیقه است. نتیجه‌گیری: بر اساس نتایج حاصل از پژوهش حاضر و بررسی رفتار میکرو پمپ و تغییرات دبی خروجی آن در شرایط کاری مختلف، هرچه طول شیرها افزایش یابد، دبی ارائه‌شده بیشتر می‌شود. درنهایت، یک شرط مطلوب برای عرض و زاویه حمله سوپاپ‌ها وجود دارد؛ که این عرض مطلوب به‌سرعت جریان بستگی ندارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical Modeling of Piezoelectric Micropump

نویسندگان English

hassan nemati garetapeh 1
majid rajabi 2
1 University of Tehran
2 Iran University of Science and Technology
چکیده English

Objective: Advances in microelectromechanical (MEMS) technologies over the past few decades have contributed to the rapid development of a wide range of microfluidic devices with different functionalities. Fluids are driven through microfluidic systems, therefore, in the current research, it is intended to parametrically investigate the effects of the main parameters, namely length, width and angle of attack of valves, piezoelectric length and applied voltage. Method: The approach of the present research is applied and analytical-experimental with numerical simulations where the tensile force is calculated using COMSOL Multiphysics software and the equations are calculated using the fully coupled algorithm in COMSOL Multiphysics. Findings: The results of the present research show that the main parameters significantly affect the performance of the designed micro pump. So that the applied voltage is 400 volts, the angle of attack is 45 degrees and the width of the valves is 6 micrometers, respectively for the piezoelectric length of 4, 2 and 5 mm, the flow rate is 6. 0.6, 9.6 and 16.6 microliters per minute are obtained. For valve widths of 6 and 8 micrometers, optimal attack angles of 60 and 65 degrees, the corresponding flow rates are 11.11 and 5.9 microliters per minute, respectively. Conclusion: Based on the results of the present research and the investigation of the behavior of the micropump and its output flow rate changes in different working conditions, as the length of the valves increases, the flow rate provided increases. Finally, there is a favorable condition for the width and angle of attack of the valves. This optimal width does not depend on the flow speed.

کلیدواژه‌ها English

Piezoelectric Micropump
Passive Valve
Numerical Modeling
Flexible Membrane
1. Gidde, Ranjitsinha R., Prashant M. Pawar, Babruvahan P. Ronge, and Vishal P. Dhamgaye. 2018. “Design Optimization of an Electromagnetic Actuation Based Valveless Micropump for Drug Delivery Application.” Microsystem Technologies 2018 25:2 25(2): 509–19. https://link.springer.com/article/10.1007/s00542-018-3987-y (January 27, 2022).
2. Shi, Huanhuan, Yali Zhao, and Zhengchun Liu. 2020. “Numerical Investigation of the Secondary Flow Effect of Lateral Structure of Micromixing Channel on Laminar Flow.” Sensors and Actuators B: Chemical 321: 128503.
3. Bar-Cohen, Yoseph, and Iain A. Anderson. 2019. “Electroactive Polymer (EAP) Actuators—Background Review.” Mechanics of Soft Materials 2019 1:1 1(1): 1–14. https://link.springer.com/article/10.1007/s42558-019-0005-1 (January 27, 2022).
4. Sato, Tasuku et al. 2017. “Electrohydrodynamic Conduction Pump with Asymmetrical Electrode Structures in the Microchannels.” http://dx.doi.org/10.1246/cl.170217 46(7): 950–52. https://www.journal.csj.jp/doi/abs/10.1246/cl.170217 (January 27, 2022).
5. Özbey, Arzu et al. 2014. “Modeling of Ferrofluid Magnetic Actuation with Dynamic Magnetic Fields in Small Channels.” Microfluidics and Nanofluidics 2014 18:3 18(3): 447–60. https://link.springer.com/article/10.1007/s10404-014-1442-7 (January 27, 2022).
6. Kurtoǧlu, Evrim et al. 2012. “Ferrofluid Actuation with Varying Magnetic Fields for Micropumping Applications.” Microfluidics and Nanofluidics 2012 13:4 13(4): 683–94. https://link.springer.com/article/10.1007/s10404-012-1008-5 (January 27, 2022).
7. Malvandi, A., and D. D. Ganji. 2014. “Magnetohydrodynamic Mixed Convective Flow of Al2O3–Water Nanofluid inside a Vertical Microtube.” Journal of Magnetism and Magnetic Materials 369: 132–41.
8. Laser, D. J., and J. G. Santiago. 2004. “A Review of Micropumps.” Journal of Micromechanics and Microengineering 14(6): R35. https://iopscience.iop.org/article/10.1088/0960-1317/14/6/R01 (January 27, 2022).
9. Mohith, S., P. Navin Karanth, and S. M. Kulkarni. 2019. “Recent Trends in Mechanical Micropumps and Their Applications: A Review.” Mechatronics 60: 34–55.
10. Physicist, J Ouellette - Industrial, and undefined 2003. “A New Wave of Microfluidic Devices.” sdsu-physics.org. http://www.sdsu physics.org/MicroFluidics/misc/New_Wave.pdf (January 27, 2022).
11. Yazdi, SAF Farshchi, A Corigliano, R Ardito - Micromachines, and undefined 2019. “3-D Design and Simulation of a Piezoelectric Micropump.” mdpi.com. https://www.mdpi.com/2072-666X/10/4/259 (January 27, 2022).
12. Asadi Dereshgi, Hamid, Huseyin Dal, and Mehmet Emin Sayan. 2020. “Analytical Analysis of a Circular Unimorph Piezoelectric Actuator in the Range of Low Voltages and Pressures.” Microsystem Technologies 2020 26:8 26(8): 2453–64. https://link.springer.com/article/10.1007/s00542-020-04786-w (January 27, 2022).
13. Bernacca, Gillian M., Bernard O’Connor, David F. Williams, and David J. Wheatley. 2002. “Hydrodynamic Function of Polyurethane Prosthetic Heart Valves: Influences of Young’s Modulus and Leaflet Thickness.” Biomaterials 23(1): 45–50.
14. Zengerle, R. et al. 1995. “A Bidirectional Silicon Micropump.” Sensors and Actuators A: Physical 50(1–2): 81–86.
15. Srinivasa Rao, K., Md Hamza, P. Ashok Kumar, and K. Girija Sravani. 2019. “Design and Optimization of MEMS Based Piezoelectric Actuator for Drug Delivery Systems.” Microsystem Technologies 2019 26:5 26(5): 1671–79. https://link.springer.com/article/10.1007/s00542-019-04712-9 (January 27, 2022).
16. Oates, William S., and Christopher S. Lynch. 2016. “Piezoelectric Hydraulic Pump System Dynamic Model:” http://dx.doi.org/10.1177/104538901400438037 12(11): 737–44. https://journals.sagepub.com/doi/abs/10.1177/104538901400438037 (January 27, 2022).
17. Shen, Meng, Christophe Yamahata, and Martin A.M. Gijs. 2008. “Miniaturized PMMA Ball-Valve Micropump with Cylindrical Electromagnetic Actuator.” Microelectronic Engineering 85(5–6): 1104–7.
18. Su, Yu Feng, Wen Yuan Chen, Feng Cui, and Wei Ping Zhang. 2007. “Design and Fabrication Process of Electromagnetically Actuated Valveless Micropump with Two Parallel Flexible Diaphragms.” Journal of Shanghai University (English Edition) 2007 11:1 11(1): 79–83. https://link.springer.com/article/10.1007/s11741-007-0114-1 (January 27, 2022).
19. Schabmueller, CGJ, M Koch, … ME Mokhtari - Journal of, and undefined 2002. “Self-Aligning Gas/Liquid Micropump.” iopscience.iop.org. https://iopscience.iop.org/article/10.1088/0960-1317/12/4/313/meta (January 27, 2022).
20. Olsson, Anders, Göran Stemme, and Erik Stemme. 1995. “A Valve-Less Planar Fluid Pump with Two Pump Chambers.” Sensors and Actuators A: Physical 47(1–3): 549–56.
21. Esashi, Masayoshi, Shuichi Shoji, and Akira Nakano. 1989. “Normally Closed Microvalve and Mircopump Fabricated on a Silicon Wafer.” Sensors and Actuators 20(1–2): 163–69.
22. van Lintel, H. T.G., F. C.M. van De Pol, and S. Bouwstra. 1988. “A Piezoelectric Micropump Based on Micromachining of Silicon.” Sensors and Actuators 15(2): 153–67.
23. Cazorla, P. H. et al. 2014. “Piezoelectric Micro-Pump with PZT Thin Film for Low Consumption Microfluidic Devices.” Procedia Engineering 87: 488–91.
24. Ashraf, Muhammad Waseem, Shahzadi Tayyaba, and Nitin Afzulpurkar. 2011. “Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications.” International Journal of Molecular Sciences 2011, Vol. 12, Pages 3648-3704 12(6): 3648–3704. https://www.mdpi.com/1422-0067/12/6/3648/htm (January 27, 2022).
25. Zhang, Tao, and Qing Ming Wang. 2005. “Valveless Piezoelectric Micropump for Fuel Delivery in Direct Methanol Fuel Cell (DMFC) Devices.” Journal of Power Sources 140(1): 72–80.
26. de Lima, Cícero R. et al. 2009. “A Biomimetic Piezoelectric Pump: Computational and Experimental Characterization.” Sensors and Actuators A: Physical 152(1): 110–18.
27. Accoto, D., O. T. Nedelcu, M. C. Carrozza, and P. Dario. 1998. “Theoretical Analysis and Experimental Testing of a Miniature Piezoelectric Pump.” Proceedings of the International Symposium on Micromechatronics and Human Science: 261–68.
28. Guo, Shuxiang et al. 1998. “New Type of Capsule Micropump Using ICPF Actuator.” Proceedings of the International Symposium on Micromechatronics and Human Science: 255–60.
29. Guo, Shuxiang, Tatsuya Nakamura, Toshio Fukuda, and Keisuke Oguro. 1996. “Design and Experiments of Micro Pump Using ICPF Actuator.” Proceedings of the International Symposium on Micro Machine and Human Science: 235–40.
30. Huang, Jun et al. 2019. “A Valveless Piezoelectric Micropump Based on Projection Micro Litho Stereo Exposure Technology.” IEEE Access 7: 77340–47.
31. Zhao, Da et al. 2019. “Experimental Analysis of a Valve-Less Piezoelectric Micropump with Crescent-Shaped Structure.” Journal of Micromechanics and Microengineering 29(10): 105004. https://iopscience.iop.org/article/10.1088/1361-6439/ab3278 (January 27, 2022).