مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدلسازی پایا و گذرای سلول خورشیدی حساس شده با رنگ در شرایط داخل اتاق بر اساس تحلیل حساسیت

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه خواجه نصیرالدین طوسی
چکیده
از آنجایی که سلول‌های خورشیدی حساس شده با رنگ کارایی مناسبی در ناحیه طیف مریی دارند، یک راه امیدوارکننده برای تولید انرژی پایدار، به‌ویژه در محیط‌های داخلی و کاربردهای ساختمانی، ارائه می‌کنند. بررسی تاثیر رنگدانه و همچنین تغییرات فوتوآند بر عملکرد سلول برای پیشبرد این سلول‌ها بسیار مهم است. این تحقیق بر تجزیه و تحلیل حساسیت اثر پارامترهای مهم برای افزایش کارایی این نوع سلول‌ها با استفاده از یک مدل عددی جدید با در نظر گرفتن عواملی مانند شدت تابش و ترکیب طیفی، از منابع نور معمولی داخلی مانند دیودهای ساطع نور تمرکز دارد. این پارامترها شامل انواع رنگدانه، پارامتر تله‌اندازی، ضریب انتشار و ضخامت فوتوآند است. این مدل جریانهای پایا و گذرا را تحت شرایط تابش داخلی بررسی میکند و روابط وابسته به زمان/مکان را برای افزایش دقت ترکیب میکند و برهمکنش‌های الکترون، یدید و ترییدید را تحت شرایط محیطی مختلف بررسی میکند. نتایج نشان داد که رنگدانه N749 و ضخامت 20میکرومتر فتوآند بهترین تاثیر را بر عملکرد سلول دارد. در نهایت بر اساس تحلیل حساسیت انجام شده یک سلول با پارامترهای بهینه که بهترین علکرد را دارد معرفی شده‌است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Steady-State and Transient Modeling of a Dye-Sensitized Solar Cell under Indoor Conditions Based on Sensitivity Analysis

نویسندگان English

Mona Rahmatian
Hoseyn Sayyaadi
Khajeh Nasir Toosi University of Technology
چکیده English

Since dye-sensitized solar cells (DSSCs) have good efficiency in the visible region, they offer a promising way to generate sustainable energy, especially in indoor environments and building applications. Investigating the effect of dye specifications and photoanode thickness changes on cell performance is very important for improving DSSCs. This research focuses on the sensitivity analysis of the impact of important parameters to increase DSSC efficiency using a new numerical model considering factors such as radiation intensity and spectral composition, from conventional indoor light sources such as LED and fluorescent lights. These parameters include dye types, trapping parameters, diffusion coefficients, and photoanode thickness. This model examines steady and transient currents under internal radiation conditions, incorporates time/space-dependent relationships to increase accuracy, and examines electron, iodide, and triiodide interactions under different environmental conditions. The results showed that N749 and 20µm thickness of photoanode have the best effect on cell performance. This study presents a sensitivity analysis to find optimal parameters to improve DSSC performance in real indoor conditions opening avenues for further research in optimizing DSSC technology for indoor energy harvesting applications, thereby advancing the field of renewable energy and sustainable technology integration.

کلیدواژه‌ها English

Indoor Photovoltaic
Dye-Sensitized Solar Cell
Dye
N749
Photoanode
1. Hossein Motlagh, N., et al., Internet of Things (IoT) and the Energy Sector. 2020. 13(2): p. 494.
2. Venkateswararao, A., et al., Device characteristics and material developments of indoor photovoltaic devices. Materials Science and Engineering: R: Reports, 2020. 139: p. 100517.
3. Venkatesan, S., et al., High-efficiency bifacial dye-sensitized solar cells for application under indoor light conditions. ACS applied materials & interfaces, 2019. 11(45): p. 42780-42789.
4. Szindler, M., et al., Dye-Sensitized Solar Cell for Building-Integrated Photovoltaic (BIPV) Applications. Materials, 2021. 14(13): p. 3743.
5. Dunne, N.A., et al., Performance evaluation of a solar photovoltaic-thermal (PV/T) air collector system. Energy Conversion and Management: X, 2023. 20: p. 100466.
6. Rahmatian, M., H. Sayyaadi, and M. Ameri, Indoor photovoltaics: A numerical model of dye-sensitized solar cells based on indoor illumination for the Internet of Things applications. Energy Conversion and Management: X, 2024. 22: p. 100606.
7. Rahmatian, M. and H. Sayyaadi, A systematic review of a photoelectrical innovation: dye-sensitized solar cells. International Journal of Ambient Energy, 2024. 45(1): p. 2366538.
8. Selvaraj, P., et al., Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Solar Energy Materials and Solar Cells, 2018. 175: p. 29-34.
9. Michaels, H., et al., Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things. Chemical Science, 2020. 11(11): p. 2895-2906.
10. Aslam, A., et al., Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications. Solar Energy, 2020. 207: p. 874-892.
11. Kalyanasundaram, K., Grätzel, M., Efficient Dye-Sensitized Solar Cells for Direct Conversion of Sunlight to Electricity. Material Matters, 2009. 4: p. 88-91.
12. Han, J., et al., DFT and TD-DFT study of substituent effects on structure, spectroscopic and photoelectric characteristics of DA dyes for solar cells. Materials Science in Semiconductor Processing, 2024. 178: p. 108421.
13. O'Regan, B. and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
14. Rahmatian, M., H. Sayyaadi, and M. Ameri, A novel thermoelectrical model for dye-sensitized solar cells for consideration of the effects of solar irradiation, wavelength, and surface temperature. Solar Energy, 2023. 266: p. 112140.
15. Bisquert, J. and V.S. Vikhrenko, Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2004. 108(7): p. 2313-2322.
16. Andrade, L., et al., Phenomenological modeling of dye-sensitized solar cells under transient conditions. Solar Energy, 2011. 85(5): p. 781-793.
17. Ferber, J., R. Stangl, and J. Luther, An electrical model of the dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 1998. 53(1): p. 29-54.
18. Peter, L.M., Dye-sensitized nanocrystalline solar cells. Physical Chemistry Chemical Physics, 2007. 9(21): p. 2630-2642.
19. Gentilini, D., et al., Correlation between Cell Performance and Physical Transport Parameters in Dye Solar Cells. The Journal of Physical Chemistry C, 2012. 116(1): p. 1151-1157.
20. Diantoro, M., et al., Electron Diffusion Model Based on I-V Data Fitting as the Calculation Method for DSSC Internal Parameters. IOP Conference Series: Materials Science and Engineering, 2019. 515: p. 012016.
21. Ansari-Rad, M., Y. Abdi, and E. Arzi, Monte Carlo Random Walk Simulation of Electron Transport in Dye-Sensitized Nanocrystalline Solar Cells: Influence of Morphology and Trap Distribution. The Journal of Physical Chemistry C, 2012. 116(5): p. 3212-3218.
22. Rahmatian, M. and H. Sayyaadi, Steady and transient modeling of dye-sensitive solar cells: The impact of electrode thickness and dye specifications. Energy Conversion and Management: X, 2024. 24: p. 100709.
23. Boukezzi, L., et al., Effect of Isothermal Conditions on the Charge Trapping/Detrapping Parameters in e-Beam Irradiated Thermally Aged XLPE Insulation in SEM. 2022. 15(5): p. 1918.
24. Suzuki, Y., et al., Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells. Central European Journal of Chemistry, 2006. 4(3): p. 476-488.
25. Park, N.-G., et al., Effect of Cations on the Open-Circuit Photovoltage and the Charge-Injection Efficiency of Dye-Sensitized Nanocrystalline Rutile TiO 2 Films. Bulletin of the Korean Chemical Society, 2000. 21.
26. Jennings, J.R., et al., Dye-Sensitized Solar Cells Based on Oriented TiO2 Nanotube Arrays: Transport, Trapping, and Transfer of Electrons. Journal of the American Chemical Society, 2008. 130(40): p. 13364-13372.
27. Ameri, M., et al., An alternate method to extract performance characteristics in dye sensitized solar cells. Optik, 2018. 154: p. 640-655.
28. Wante, H.P., J. Aidan, and S.C. Ezike, Efficient dye-sensitized solar cells (DSSCs) through atmospheric pressure plasma treatment of photoanode surface. Current Research in Green and Sustainable Chemistry, 2021. 4: p. 100218.
29. Longo, C. and M.-A. De Paoli, Dye-sensitized solar cells: a successful combination of materials. Journal of the Brazilian Chemical Society, 2003. 14.
30. Tahir, M., et al., Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications. 2022. 12(8): p. 1163.
31. Muhammad Tahir, I.U.D., Fakhra Aziz et al. , Fabrication and Photovoltaic Study of N749-Black Dye Based Solar Cell. Research Square, 2021.
32. Lim, J., et al., Fabrication of panchromatic dye-sensitized solar cells using pre-dye coated TiO2 nanoparticles by a simple dip coating technique. RSC Advances, 2013. 3(14): p. 4801-4805.
33. Deng, K., et al., Dye Nanoaggregate Structures in MK-2, N3, and N749 Dye···TiO2 Interfaces That Represent Dye-Sensitized Solar Cell Working Electrodes. ACS Applied Energy Materials, 2020. 3(1): p. 900-914.
34. Chang, S., et al., Effective improvement of the photovoltaic performance of black dye sensitized quasi-solid-state solar cells. RSC Advances, 2014. 4(60): p. 31759-31763.