F. Matoui, B. Boussaid, B. Metoui, M.N. Abdelkrim, Contribution to the path planning of a multi-robot system: centralized architecture, Intell. Serv. Robot. 13 (2020) 147–158. https://doi.org/10.1007/s11370-019-00302-w.
T. Zhao, H. Li, S. Dian, Multi-robot path planning based on improved artificial potential field and fuzzy inference system, J. Intell. Fuzzy Syst. 39 (2020) 7621–7637. https://doi.org/10.3233/JIFS-200869.
G. Klancar, A. Zdesar, S. Blazic, I. Skrjanc, Path Planning, in: Wheel. Mob. Robot., Elsevier, 2017: pp. 161–206. https://doi.org/10.1016/B978-0-12-804204-5.00004-4.
N. Zagradjanin, D. Pamucar, K. Jovanovic, Cloud-based multi-robot path planning in complex and crowded environment with multi-criteria decision making using full consistency method, Symmetry (Basel). 11 (2019). https://doi.org/10.3390/sym11101241.
F. Kendoul, Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems, J. F. Robot. 29 (2012) 315–378. https://doi.org/10.1002/rob.20414.
E. Khanmirza, M. Haghbeigi, M. Nazarahari, S. Doostie, A Comparative Study of Deterministic and Probabilistic Mobile Robot Path Planning Algorithms, 5th RSI Int. Conf. Robot. Mechatronics, IcRoM 2017. (2018) 534–539. https://doi.org/10.1109/ICRoM.2017.8466197.
D. Nikkhoe Tanha, M. Habibnejad korayem, S. fathollahi dehkordi, Path Design and Control of a Moving Social Robot in an Environment with Moving Obstacles in Order to Reach a Moving Target through Fuzzy Control, Amirkabir J. Mech. Eng. 53 (2021) 993–1014. https://doi.org/10.22060/mej.2019.16409.6362.
S.-A. Abtahi, M.A. Amiri Atashgah, B. Tarvirdizadeh, M. Shahbazi, Aerial Robotics in Urban Environments: Optimized Path Planning and SITL Assessments, in: 2023 11th RSI Int. Conf. Robot. Mechatronics, 2023: pp. 271–278. https://doi.org/10.1109/ICRoM60803.2023.10412604.
A.K. Seyed Iman Kassaei, S.I. Kassaei, A. Kosari, Aircraft Trajectory Planning with an Altitude-Bound in terrain-following flight, Modares Mech. Eng. 17 (2018) 135–144. http://mme.modares.ac.ir/article-15-7770-fa.html.
A. Analooee, S. Azadi, R. Kazemi, arezoo cadkhodajafarian, A. Analooee, S. Azadi, R. Kazemi, Collision-Free Navigation and Control for Autonomous Vehicle in Complex Urban Environments, Modares Mech. Eng. 17 (2018) 277–288. http://mme.modares.ac.ir/article-15-400-en.html.
M. Fakoor, A. Kosari, M. Jafarzadeh, Humanoid robot path planning with fuzzy Markov decision processes, J. Appl. Res. Technol. 14 (2016) 300–310. https://doi.org/https://doi.org/10.1016/j.jart.2016.06.006.
S.A.A. Moosavian, A. Daneshvar, M. Moradi, M. Morady, zero reaction path planning for mobile robot arms, Modares Mech. Eng. 11 (2011) 43–51. https://mme.modares.ac.ir/article-15-3280-en.html.
O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, in: Proceedings. 1985 IEEE Int. Conf. Robot. Autom., Institute of Electrical and Electronics Engineers, 1985: pp. 500–505. https://doi.org/10.1109/ROBOT.1985.1087247.
M.C. Lee, M.G. Park, Artificial potential field based path planning for mobile robots using a virtual obstacle concept, in: Proc. 2003 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics (AIM 2003), 2003: pp. 735–740 vol.2. https://doi.org/10.1109/AIM.2003.1225434.
R. Szczepanski, A. Bereit, T. Tarczewski, Efficient Local Path Planning Algorithm Using Artificial Potential Field Supported by Augmented Reality, Energies. 14 (2021) 6642. https://doi.org/10.3390/en14206642.
A. Tahri, L. Guenfaf, Local-Minimum-Free Artificial Potential Field Method for Obstacle Avoidance, in: K. Arai (Ed.), Intell. Syst. Appl., Springer International Publishing, Cham, 2022: pp. 323–331. https://doi.org/10.1007/978-3-030-82199-9_20.
S. Tao, Improved artificial potential field method for mobile robot path planning, Appl. Comput. Eng. 33 (2024) 157–166. https://doi.org/10.54254/2755-2721/33/20230259.
S.D. Han, J. Yu, DDM: Fast Near-Optimal Multi-Robot Path Planning Using Diversified-Path and Optimal Sub-Problem Solution Database Heuristics, IEEE Robot. Autom. Lett. 5 (2020) 1350–1357. https://doi.org/10.1109/LRA.2020.2967326.
W. Zhao, R. Lin, S. Dong, W. Zhao, Y. Cheng, Dynamic node allocation-based multirobot path planning, IEEE Access. 9 (2021) 106399–106411. https://doi.org/10.1109/ACCESS.2021.3097897.
B. Tang, K. Xiang, M. Pang, Z. Zhanxia, Multi-robot path planning using an improved self-adaptive particle swarm optimization, Int. J. Adv. Robot. Syst. 17 (2020) 1–19. https://doi.org/10.1177/1729881420936154.
G. Sharon, R. Stern, A. Felner, N.R. Sturtevant, Conflict-based search for optimal multi-agent pathfinding, Artif. Intell. 219 (2015) 40–66. https://doi.org/10.1016/j.artint.2014.11.006.
A. Rathi, R. G, M. Vadali, Dynamic Prioritization for Conflict-Free Path Planning of Multi-Robot Systems, Rob. Auton. Syst. (2021). http://arxiv.org/abs/2101.01978.
P.R. Wurman, R. D’Andrea, M. Mountz, Coordinating hundreds of cooperative, autonomous vehicles in warehouses, AI Mag. 29 (2008) 9–19.
K. Sharma, R. Doriya, Coordination of multi-robot path planning for warehouse application using smart approach for identifying destinations, Intell. Serv. Robot. 14 (2021) 313–325. https://doi.org/10.1007/s11370-021-00363-w.
W. Wu, S. Bhattacharya, A. Prorok, Multi-Robot Path Deconfliction through Prioritization by Path Prospects, in: Proc. - IEEE Int. Conf. Robot. Autom., 2020: pp. 9809–9815. https://doi.org/10.1109/ICRA40945.2020.9196813.
K. Sharma, R. Doriya, Coordination of multi-robot path planning for warehouse application using smart approach for identifying destinations, Intell. Serv. Robot. 2021 142. 14 (2021) 313–325. https://doi.org/10.1007/S11370-021-00363-W.
D. Foead, A. Ghifari, M.B. Kusuma, N. Hanafiah, E. Gunawan, A Systematic Literature Review of A*Pathfinding, Procedia Comput. Sci. 179 (2021) 507–514. https://doi.org/10.1016/j.procs.2021.01.034.
G. Wagner, H. Choset, Subdimensional expansion for multirobot path planning, Artif. Intell. 219 (2015) 1–24. https://doi.org/10.1016/j.artint.2014.11.001.
T. Standley, Finding optimal solutions to cooperative pathfinding problems, in: Proc. Natl. Conf. Artif. Intell., 2010: pp. 173–178.
M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant, R.C. Holte, J. Schaeffer, Enhanced partial expansion A*, J. Artif. Intell. Res. 50 (2014) 141–187. https://doi.org/10.1613/jair.4171.
P. Surynek, Towards optimal cooperative path planning in hard setups through satisfiability solving, in: Pacific Rim Int. Conf. Artif. Intell., Springer, 2012: pp. 564–576.
E. Erdem, D.G. Kisa, U. Oztok, P. Schüller, A general formal framework for pathfinding problems with multiple agents, Proc. 27th AAAI Conf. Artif. Intell. AAAI 2013. (2013) 290–296.
G. Sharon, R. Stern, M. Goldenberg, A. Felner, The increasing cost tree search for optimal multi-agent pathfinding, in: Artif. Intell., 2013: pp. 470–495. https://doi.org/10.1016/j.artint.2012.11.006.
G. Wagner, H. Choset, M*: A complete multirobot path planning algorithm with performance bounds, in: IEEE/RSJ Int. Conf. Intell. Robot. Syst., Institute of Electrical and Electronics Engineers (IEEE), 2011: pp. 3260–3267. https://doi.org/10.1109/iros.2011.6095022.
R. Luna, K.E. Bekris, Efficient and complete centralized multi-robot path planning, Proc. 4th Annu. Symp. Comb. Search, SoCS 2011. (2011) 201–202. https://doi.org/10.1109/iros.2011.6095085.
B. De Wilde, A.W. Ter Mors, C. Witteveen, Push and rotate: Cooperative multi-agent path planning, 12th Int. Conf. Auton. Agents Multiagent Syst. 2013, AAMAS 2013. 1 (2013) 87–94.
F. Matoui, B. Boussaid, M.N. Abdelkrim, Distributed path planning of a multi-robot system based on the neighborhood artificial potential field approach, Simulation. 95 (2019) 637–657. https://doi.org/10.1177/0037549718785440.
D. Zhang, G. Zhu, Q. Zhang, Multi-Robot Motion Planning: A Learning-Based Artificial Potential Field Solution, in: 2023 2nd Conf. Fully Actuated Syst. Theory Appl., IEEE, 2023: pp. 233–238. https://doi.org/10.1109/CFASTA57821.2023.10243195.