مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تاثیر پیش کرنش سرد بر استحکام کششی و فشاری سوپر آلیاژ اینکونل718 تولید شده به روش ذوب لیزر انتخابی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده
سوپر­­آلیاژ اینکونل718 به دلیل خواص خوب در دمای بالا به شکل گسترده­ای در صنایع مختلف مصرف می­شود. تولید قطعات از جنس سوپرآلیاژ اینکونل718 به روش ذوب لیزر انتخابی امکان تولید قطعات با هندسه پیچیده را فراهم می­سازد. براین اساس بهبود خواص مکانیکی قطعات تولید شده به روش ذوب لیزر انتخابی با استفاده از فرایندهای ثانویه استحکام بخشی حائز اهمیت می­باشد. در این پژوهش تاثیر پیش­کرنش سرد بر استحکام کششی و فشاری نمونه­های سوپرآلیاژ اینکونل718 تولید شده به روش ذوب لیزر انتخابی بررسی شده است. نمونه­های آزمایش با روش ذوب لیزر انتخابی تولید شده و تحت بارگذاری تک مرحله­ای (%5-%15-%30) و دو مرحله­ای (%4-%12-%16) قرار گرفته است. به منظور بررسی تاثیر بارگذاری اولیه بر خواص مکانیکی از آزمون کشش، آزمون فشار و آزمون سختی و برای بررسی رفتار میکروساختار از میکروسکوپ نوری استفاده شد. طبق نتایج بدست آمده استحکام تسلیم و استحکام نهایی کششی سوپرآلیاژ اینکونل718 در راستای محور Y (صفحه XY ) بعد از اعمال30% ­کرنش اولیه در راستای محور تولید ( Z ) معادل 8/31% و 6/11% افزایش یافته است. استحکام تسلیم فشاری سوپرآلیاژ اینکونل718 با افزایش پیش­کرنش به %30 معادل 3/79% در راستای جهت تولید ( Z ) افزایش یافته است. به عبارت دیگر اعمال پیش­کرنش در راستای محور Z بر استحکام فشاری در صفحه XZ به عنوان کرنش اصلی و بر استحکام کششی در صفحه XY به عنوان کرنش برشی بر قطعه تاثیر­گذار می­باشد. اعمال پیش کرنش تا 30% تاثیر کمی بر خواص سختی سوپرآلیاژ اینکونل718 دارد. نتایج حاصل از اعمال بارگذاری در دو مرحله بیانگر بهبود استحکام با افزایش تعداد مراحل بارگذاری بدلیل وجود پدیده کارسختی می­باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Effect of Cold Pre-Strain on the Tensile and Compressive Strength of Inconel 718 Superalloy Produced by Selective Laser Melting

نویسندگان English

Sajjad Lohrasbi
Soheil Nakhodchi
K.N.Toosi University of Technology
چکیده English

Inconel 718 superalloy is widely used in various industries due to its excellent high-temperature properties. The production of components made from Inconel 718 superalloy through the Selective Laser Melting (SLM) method enables the fabrication of parts with complex geometries. Therefore, improving the mechanical properties of parts produced by SLM using secondary strengthening processes is of great importance. This study investigates the effect of cold pre-strain on the tensile and compressive strength of Inconel 718 superalloy samples produced by SLM. The test specimens were produced by the SLM method and subjected to single-stage (5%-15%-30%) and two-stage (4%-12%-16%) loading. To examine the impact of initial loading on mechanical properties, tensile, compression, and hardness tests were performed, and the microstructure behavior was analyzed using an optical microscope. The results indicate that the yield strength and ultimate tensile strength of the Inconel 718 superalloy in the Y-axis (XY plane) increased by 31.8% and 11.6%, respectively, after applying a 30% initial strain along the Z-axis. The compressive yield strength of Inconel 718 superalloy increased by 79.3% in the Z-direction with a 30% pre-strain. In other words, applying pre-strain along the Z-axis affects the compressive strength in the XZ plane as the principal strain and the tensile strength in the XY plane as the shear strain. Increasing pre-strain to 30% has a minimal effect on the hardness properties of Inconel 718 superalloy. The results from the two-stage loading process indicate an enhancement in strength with the increase in the number of loading stages, attributed to the work-hardening phenomenon

کلیدواژه‌ها English

Inconel 718
Additive Manufacturing
Selective Laser Melting
Strengthening
Cold Pre-Strain
1. Zhang S, Lin X, Wang L, Yu X, Hu Y, Yang H, et al. Strengthening mechanisms in selective laser-melted Inconel718 superalloy. Materials Science and Engineering: A. 2021;812:141145.
2. Tekoğlu E, O’Brien AD, Liu J, Wang B, Kavak S, Zhang Y, et al. Strengthening additively manufactured Inconel 718 through in-situ formation of nanocarbides and silicides. Additive Manufacturing. 2023;67:103478.
3. Hosseini E, Popovich V. A review of mechanical properties of additively manufactured Inconel 718. Additive Manufacturing. 2019;30:100877.
4. Schafrik R, Sprague R. Saga of gas turbine materials: part II of this four-part series on gas turbine materials development covers vacuum arc remelting, early superalloys, and titanium processing. Advanced materials & processes. 2004;162(4):27-31.
5. Petkov VI. Alloy 718 manufactured by AM selective laser melting: evaluation of microstructure and weldability. 2018.
6. Brenne F, Taube A, Pröbstle M, Neumeier S, Schwarze D, Schaper M, et al. Microstructural design of Ni-base alloys for high-temperature applications: impact of heat treatment on microstructure and mechanical properties after selective laser melting. Progress in Additive Manufacturing. 2016;1:141-51.
7. Du D, Dong A, Shu D, Zhu G, Sun B, Li X, et al. Influence of build orientation on microstructure, mechanical and corrosion behavior of Inconel 718 processed by selective laser melting. Materials Science and Engineering: A. 2019;760:469-80.
8. Anderson M, Thielin AL, Bridier F, Bocher P, Savoie J. δ Phase precipitation in Inconel 718 and associated mechanical properties. Materials Science and Engineering: A. 2017;679:48-55.
9. Gao Y, Zhang D, Cao M, Chen R, Feng Z, Poprawe R, et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process. Materials Science and Engineering: A. 2019;767:138327.
10. Sun W, Tan AWY, Bhowmik A, Marinescu I, Song X, Zhai W, et al. Deposition characteristics of cold sprayed Inconel 718 particles on Inconel 718 substrates with different surface conditions. Materials Science and Engineering: A. 2018;720:75-84.
11. Ran R, Wang Y, Zhang Y-x, Fang F, Wang H-s, Yuan G, et al. Microstructure, precipitates and mechanical properties of Inconel 718 alloy produced by two-stage cold rolling method. Materials Science and Engineering: A. 2020;793:139860.
12. Yang X, Wang B, Jiang W, Chen S-n, Wang J. The superplasticity improvement of Inconel 718 through grain refinement by large reduction cold rolling and two-stage annealing. Materials Science and Engineering: A. 2021;823:141713.
13. Al-Lami J, Dessolier T, Rogers S, Pirzada T, Pham M-S. Dislocation distribution, crystallographic texture evolution, and plastic inhomogeneity of Inconel 718 fabricated by laser powder‐bed fusion. Advanced Engineering Materials. 2023.
14. Zhang H, Li C, Guo Q, Ma Z, Huang Y, Li H, et al. Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 C: The role of δ phase. Materials Science and Engineering: A. 2018;722:136-46.
15. Zhang T, Li H, Gong H, Wu Y, Ahmad AS, Chen X. Effect of rolling force on tensile properties of additively manufactured Inconel 718 at ambient and elevated temperatures. Journal of Alloys and Compounds. 2021;884:161050.
16. Zhu J, Yuan W. Effect of pre-stretching on residual stresses and microstructures of inconel 718 superalloy. Metals. 2021;11(4):614.
17. Pruncu CI, Hopper C, Hooper PA, Tan Z, Zhu H, Lin J, et al. Study of the effects of hot forging on the additively manufactured stainless steel preforms. Journal of Manufacturing Processes. 2020;57:668-76.
18. Peng J, Li K, Peng J, Pei J, Zhou C. The effect of pre-strain on tensile behaviour of 316L austenitic stainless steel. Materials Science and Technology. 2018;34(5):547-60.
19. Yuan Z, Huo S. The Effect of the Pre-strain Process on the Mechanical Properties, Microstructure, Fatigue Life, and Fracture Mode of 304 Austenitic Stainless Steel. Journal of Materials Engineering and Performance. 2023;32(10):4446-55.
20. Klumpp A, Kauffmann A, Seils S, Dietrich S, Schulze V. Influence of cold rotary swaging on microstructure and uniaxial mechanical behavior in alloy 718. Metallurgical and Materials Transactions A. 2021;52(10):4331-41.
21. Tucho WM, Sletsjøe AT, Sayyar N, Hansen V. Optimizing Tensile Properties and Hardness of Inconel 718 by Cold Rolling. Metals. 2024;14(4):455.
22. Gu S, Cui Y, Kimura Y, Toku Y, Ju Y. Relief of strain hardening in deformed Inconel 718 by high-density pulsed electric current. Journal of Materials Science. 2021;56:16686-96.
23. Karia M, Popat M, Sangani K, editors. Selective laser melting of Inconel super alloy-a review. AIP Conference Proceedings; 2017: AIP Publishing.
24. Balbaa M, Mekhiel S, Elbestawi M, McIsaac J. On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Materials & Design. 2020;193:108818.
25. Chen Y-T, Yeh A-C, Li M-Y, Kuo S-M. Effects of processing routes on room temperature tensile strength and elongation for Inconel 718. Materials & Design. 2017;119:235-43.
26. Chlebus E, Gruber K, Kuźnicka B, Kurzac J, Kurzynowski T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Materials Science and Engineering: A. 2015;639:647-55.
27. Zhao Z, Xu X, Wang Q, Bai P, Du W, Zhang L, et al. Microstructure and properties of periodic porous Inconel 718 alloy prepared by selective laser melting. Advanced Composites and Hybrid Materials. 2021;4(2):332-8.