1. Zhang S, Lin X, Wang L, Yu X, Hu Y, Yang H, et al. Strengthening mechanisms in selective laser-melted Inconel718 superalloy. Materials Science and Engineering: A. 2021;812:141145.
2. Tekoğlu E, O’Brien AD, Liu J, Wang B, Kavak S, Zhang Y, et al. Strengthening additively manufactured Inconel 718 through in-situ formation of nanocarbides and silicides. Additive Manufacturing. 2023;67:103478.
3. Hosseini E, Popovich V. A review of mechanical properties of additively manufactured Inconel 718. Additive Manufacturing. 2019;30:100877.
4. Schafrik R, Sprague R. Saga of gas turbine materials: part II of this four-part series on gas turbine materials development covers vacuum arc remelting, early superalloys, and titanium processing. Advanced materials & processes. 2004;162(4):27-31.
5. Petkov VI. Alloy 718 manufactured by AM selective laser melting: evaluation of microstructure and weldability. 2018.
6. Brenne F, Taube A, Pröbstle M, Neumeier S, Schwarze D, Schaper M, et al. Microstructural design of Ni-base alloys for high-temperature applications: impact of heat treatment on microstructure and mechanical properties after selective laser melting. Progress in Additive Manufacturing. 2016;1:141-51.
7. Du D, Dong A, Shu D, Zhu G, Sun B, Li X, et al. Influence of build orientation on microstructure, mechanical and corrosion behavior of Inconel 718 processed by selective laser melting. Materials Science and Engineering: A. 2019;760:469-80.
8. Anderson M, Thielin AL, Bridier F, Bocher P, Savoie J. δ Phase precipitation in Inconel 718 and associated mechanical properties. Materials Science and Engineering: A. 2017;679:48-55.
9. Gao Y, Zhang D, Cao M, Chen R, Feng Z, Poprawe R, et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process. Materials Science and Engineering: A. 2019;767:138327.
10. Sun W, Tan AWY, Bhowmik A, Marinescu I, Song X, Zhai W, et al. Deposition characteristics of cold sprayed Inconel 718 particles on Inconel 718 substrates with different surface conditions. Materials Science and Engineering: A. 2018;720:75-84.
11. Ran R, Wang Y, Zhang Y-x, Fang F, Wang H-s, Yuan G, et al. Microstructure, precipitates and mechanical properties of Inconel 718 alloy produced by two-stage cold rolling method. Materials Science and Engineering: A. 2020;793:139860.
12. Yang X, Wang B, Jiang W, Chen S-n, Wang J. The superplasticity improvement of Inconel 718 through grain refinement by large reduction cold rolling and two-stage annealing. Materials Science and Engineering: A. 2021;823:141713.
13. Al-Lami J, Dessolier T, Rogers S, Pirzada T, Pham M-S. Dislocation distribution, crystallographic texture evolution, and plastic inhomogeneity of Inconel 718 fabricated by laser powder‐bed fusion. Advanced Engineering Materials. 2023.
14. Zhang H, Li C, Guo Q, Ma Z, Huang Y, Li H, et al. Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 C: The role of δ phase. Materials Science and Engineering: A. 2018;722:136-46.
15. Zhang T, Li H, Gong H, Wu Y, Ahmad AS, Chen X. Effect of rolling force on tensile properties of additively manufactured Inconel 718 at ambient and elevated temperatures. Journal of Alloys and Compounds. 2021;884:161050.
16. Zhu J, Yuan W. Effect of pre-stretching on residual stresses and microstructures of inconel 718 superalloy. Metals. 2021;11(4):614.
17. Pruncu CI, Hopper C, Hooper PA, Tan Z, Zhu H, Lin J, et al. Study of the effects of hot forging on the additively manufactured stainless steel preforms. Journal of Manufacturing Processes. 2020;57:668-76.
18. Peng J, Li K, Peng J, Pei J, Zhou C. The effect of pre-strain on tensile behaviour of 316L austenitic stainless steel. Materials Science and Technology. 2018;34(5):547-60.
19. Yuan Z, Huo S. The Effect of the Pre-strain Process on the Mechanical Properties, Microstructure, Fatigue Life, and Fracture Mode of 304 Austenitic Stainless Steel. Journal of Materials Engineering and Performance. 2023;32(10):4446-55.
20. Klumpp A, Kauffmann A, Seils S, Dietrich S, Schulze V. Influence of cold rotary swaging on microstructure and uniaxial mechanical behavior in alloy 718. Metallurgical and Materials Transactions A. 2021;52(10):4331-41.
21. Tucho WM, Sletsjøe AT, Sayyar N, Hansen V. Optimizing Tensile Properties and Hardness of Inconel 718 by Cold Rolling. Metals. 2024;14(4):455.
22. Gu S, Cui Y, Kimura Y, Toku Y, Ju Y. Relief of strain hardening in deformed Inconel 718 by high-density pulsed electric current. Journal of Materials Science. 2021;56:16686-96.
23. Karia M, Popat M, Sangani K, editors. Selective laser melting of Inconel super alloy-a review. AIP Conference Proceedings; 2017: AIP Publishing.
24. Balbaa M, Mekhiel S, Elbestawi M, McIsaac J. On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Materials & Design. 2020;193:108818.
25. Chen Y-T, Yeh A-C, Li M-Y, Kuo S-M. Effects of processing routes on room temperature tensile strength and elongation for Inconel 718. Materials & Design. 2017;119:235-43.
26. Chlebus E, Gruber K, Kuźnicka B, Kurzac J, Kurzynowski T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Materials Science and Engineering: A. 2015;639:647-55.
27. Zhao Z, Xu X, Wang Q, Bai P, Du W, Zhang L, et al. Microstructure and properties of periodic porous Inconel 718 alloy prepared by selective laser melting. Advanced Composites and Hybrid Materials. 2021;4(2):332-8.