مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه عددی و تجربی آسیب در زره چندمحفظه‌ای ناشی از بارگذاری انفجاری زیرآب تماسی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه جامع امام حسین (ع)
چکیده
سازه­‌های چندمحفظه‌­ای، دسته‌­ای از زره­‌های چندلایه هستند که به­ دلیل بازدهی مقاومتی بالا در برابر انفجارهای زیرآب، فناوری ساده و هزینه پایین ساخت و قابلیت تعمیرپذیری، به‌­طور گسترده برای محافظت از تجهیزات دریایی استفاده می­‌شوند. مقاله حاضر به مطالعه عددی آسیب ناشی از اتفجار تماسی زیرآب در سازه­‌هایی با ساختار مفهومی متشکل از سه لایه فلزی و دو محفظه مابین می­‌پردازد و بهترین مولفه­‌های ساختاری مادی را پیشنهاد می‌­دهد. برای این منظور مجموعه آزمایش­‌هایی طراحی و به­‌کمک نرم‌­افزار اتوداین شبیه­‌سازی شدند. فرآیند مدل­سازی عددی و خروجی­‌های آن با نتایج یک آزمون تجربی اعتبارسنجی شد. نتایج نشان داد که تمام ساختارهای با محیط‌­های واسط مشابه هوا-هوا و آب-آب در محفظه‌­ها دچار پارگی در لایه آخر شدند. ساختارهای با محیط­ واسط هوا-آب در صورت بهره‌گیری از لایه میانی از جنس St37، پارگی در لایه آخر را تجربه نمی‌­کنند و یک افزایش جذب انرژی قابل ­توجه 62 درصدی را مشروط به­ داشتن لایه جلو St37 نشان می ­دهند. همچنین ساختارهای با محیط­‌های واسط آب-هوا بدون هرنوع پارگی در لایه آخر، همگی موفق عمل کرده و استفاده از لایه میانی St37 در آن­‌ها منجر به کاهش 49 درصدی خیز لایه آخر می­‌شود. همچنین مقایسه عملکرد سازه‌­ها نشان داد که سازه­ای متشکل از لایه‌­های به ­ترتیب Al2024-T3، St37 و St37 و محیط‌­های واسط آب-هوا، هم­زمان بهترین مقادیر را برای خیز حداقلی 6/11 میلی‌­متری در لایه آخر و جذب انرژی ویژه سطحی حداکثری معادل با 6/84 ژول مترمربع بر کیلوگرم نتیجه می­‌دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical and Experimental Study of Damage in Multi-Compartment Armor due to UNDEX

نویسندگان English

Behrooz Khodaeipour
Hossein Khodarahmi
Milad sadeghyazdi
Mojtaba Zia shamami
Imam Hossein University
چکیده English

Multi-compartment structures are a sort of multi-layer armor widely used to protect naval equipment, due to their high resistance to underwater blasts, simple-tech/low-cost production, and repairability. The present article numerically investigates the contact UNDEX damages of conceptual-construction structures consisting of three metal layers and two mid-compartments. For this purpose, a set of experiments was designed and executed using AUTODYN. The numerical modeling process and outputs were validated with the results of an experimental test. The results showed that all the structures with the same mediums in compartments suffered rupture in their last layer. Structures with air-water mediums did not experience tearing in their last layer if had a St37 midplate. Benefiting from a St37 front plate led to a significant energy absorption increase of 62%. Also, all structures with water-air mediums had excellent resistance performances and presented a meaningful reduction of 49% in the last layer deflection providing a St37 midplate. Furthermore, the comparison of structural performances showed that the structure consisting of Al2024-T3, St37, and St37 layers respectively, and water-air mediums brings forward the most competitive altogether values for the minimum last layer's central deflection of 11.6 mm and maximum energy absorption per areal mass equal to 84.6 J.m2/kg.

کلیدواژه‌ها English

Multi-compartment structure
Contact UNDEX
Damage characteristics
Numerical parametric study
energy absorption
مراجع
1-Wu J, Chong j, Long Y, Zhou Y, Yu Y, Liu J. Experimental study on the deformation and damage of cylindrical shell-water-cylindrical shell structures subjected to underwater explosion. Thin-Walled Structures. 2018;127:654-65.
2-Gerdooei M, Rezaei MJ, Ghaforian Nosrati H. Improving the performance of a multi-layer armored system subjected to shock loading of an underwater explosion. Mechanics of Advanced Materials and Structures. 2020:1-10.
3-Cole RH, Weller R. Underwater explosions. Physics Today. 1948.
4-Keil AH. Introduction to underwater explosion research. UERD, Norfolk Naval Ship Yard, Portsmouth, Virginia. 1956.
5-Stiepanow WC, Sipilin PM, Nawagin JS, Pankratow WP. Tłoczenie wybuchowe. Warszawa: Wydawnictwa Naukowo-Techniczne. 1968.
6-Geers TL, Hunter KS. An integrated wave-effects model for an underwater explosion bubble. The Journal of the Acoustical Society of America. 2002;111(4):1584-601.
7-Rajendran R, Narasimhan K. Deformation and fracture behaviour of plate specimens subjected to underwater explosion-a review. International Journal of Impact Engineering. 2006;32(12):1945-63.
8-Ming FR, Zhang AM, Xue YZ, Wang SP. Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions. Ocean Engineering. 2016;117:359-82.
9-Kiciński R, Szturomski B. Pressure Wave Caused by Trinitrotoluene (TNT) Underwater Explosion-Short Review. Applied Sciences. 2020;10:3433.
10-Wang G, Zhang S, Yu M, Li H, Kong Y. Investigation of the shock wave propagation characteristics and cavitation effects of underwater explosion near boundaries. Applied Ocean Research. 2014;46:40-53.
11-Galehdari S, Khodarahmi H, Karimi A. Analysis of effect of standoff and charge weight on fluid pressure in underwater explosion. Journal of Passive Defence Science and Technology. 2011.
12-Fazli V, Saeed Kiasat M. Investigation of an Stiffened Air-Backed Plate Subjected To Underwater Explosion Loads. National Maritime and Shipping Conference; Chabahar1390.
13- قارنگیان رضا, محمدزاده حسین. مطالعه عددی اندرکنش آب و سازه غوطه‌ور تحت اثر انفجار زیرآب. اولین همایش ملی پدافندغیرعامل در علوم‌دریایی; بندرعباس1393.
14-Liu G-z, Liu J-h, Wang J, Pan J-q, Mao H-b. A numerical method for double-plated structure completely filled with liquid subjected to underwater explosion. Marine Structures. 2017;53:164-80.
15-Zhang Z-f, Ming F-r, Zhang Am. Damage Characteristics of Coated Cylindrical Shells Subjected to Underwater Contact Explosion. Shock and Vibration. 2014;2014:763607.
16-Moradloo J, Valaei H. Dynamic response of submerged steel cylinder subjected to underwater explosion. 7th National Congress on Civil Engineering; Zahedan1392.
17-Meng Z-F, Ming F-R, Zhang AM, Wang B. Study on the Pressure Characteristics of Shock Wave Propagating across Multilayer Structures during Underwater Explosion. Shock and Vibration. 2019;2019:1-19.
18-Chung Kim Yuen S, Nurick GN. Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: subjected to uniform blast load. International Journal of Impact Engineering. 2005;31(1):55-83.
19-Langdon GS, Yuen SCK, Nurick GN. Experimental and numerical studies on the response of quadrangular stiffened plates. Part II: localised blast loading. International Journal of Impact Engineering. 2005;31(1):85-111.
20-Chung Kim Yuen S, Butler A, Bornstein H, Cholet A. The influence of orientation of blast loading on quadrangular plates. Thin-Walled Structures. 2018;131:827-37.
21-Yao S, Zhang D, Lu Z, Lin Y, Lu F. Experimental and numerical investigation on the dynamic response of steel chamber under internal blast. Engineering Structures. 2018;168:877-88.
22-Zhang J, Shi XH, Guedes Soares C. Experimental study on the response of multi-layered protective structure subjected to underwater contact explosions. International Journal of Impact Engineering. 2017;100:23-34.
23-Lipski A. Change of Specimen Temperature during the Monotonic Tensile Test and Correlation between the Yield Strength and Thermoelasto-Plastic Limit Stress on the Example of Aluminum Alloys. Materials. 2021;14:13.
24-Behtaj M, Babaei H, Mostofi TM. Repeated uniform blast loading on welded mild steel rectangular plates. Thin-Walled Structures. 2022;178:109523.
25-Meyers MA, Chawla KK. Mechanical behavior of materials: Cambridge university press; 2008.
26-Mair HU. Review: Hydrocodes for Structural Response to Underwater Explosions. Shock and Vibration. 1999;6:587105.
27-Liu NN, Ming FR, Liu LT, Ren SF. The dynamic behaviors of a bubble in a confined domain. Ocean Engineering. 2017;144:175-90.
28-Liu NN, Wu WB, Zhang AM, Liu YL. Experimental and numerical investigation on bubble dynamics near a free surface and a circular opening of plate. Physics of Fluids. 2017;29(10):107102.
29-Autodyn A. AUTODYN Explicit Software for Nonlinear Dynamics. User’s Manual. 2013.
30-Qi C, Yang S, Yang L-J, Wei Z-Y, Lu Z-H. Blast resistance and multi-objective optimization of aluminum foam-cored sandwich panels. Composite Structures. 2013;105:45-57.
31-Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proc. 7th Int. Symposium on Ballistic. 1983.
32-Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21(1):31-48.
33-Buyuk M, Kan S, Loikkanen M. Explicit Finite-Element Analysis of 2024-T3/T351 Aluminum Material under Impact Loading for Airplane Engine Containment and Fragment Shielding. Journal of Aerospace Engineering - J AEROSP ENG. 2009;22.
34-Karim M, Hoo M. Impact of the Boeing 767 Aircraft into the World Trade Center. Journal of Engineering Mechanics. 2005;131:1066-72.
35-Li G, Chen X. Selection and analysis of material models in copper jet penetration into water. Journal of Physics: Conference Series. 2020;1507:032017.
36-Li K, Dong X, Li X, Wang Y, Wang W. Determination of JWL parameters from underwater explosion test of spherical explosives by continuous velocity probe. Journal of Energetic Materials. 2021;39(4):479-93.
37-Jha N, Kumar B. Air Blast Validation Using ANSYS/AUTODYN. International journal of engineering research and technology. 2014;3.
38-Rogers GFC, Mayhew YR. Thermodynamic and transport properties of fluids: John Wiley & Sons; 1995.
39-Lee EL, Tarver CM. Phenomenological model of shock initiation in heterogeneous explosives. The Physics of Fluids. 1980;23(12):2362-72.
40-Dobratz BM, Crawford PC. LLNL explosives handbook. UCRL-52997 Rev. 1985;2.