مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحول ماشین‌های آهنگری‌دورانی متداول به ماشین‌هایی با سینماتیک موازی شش درجه آزادی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس
چکیده
آهنگری دورانی یک فرآیند شکل‌دهی حجمی تدریجی است که در مقایسه با آهنگری سنتی مزایای قابل‌توجهی ازجمله نیاز به نیروی کمتر، عملیات روان‌تر، هزینه سرمایه‌گذاری کمتر و امکان شکل‌دهی نزدیک به شکل‌نهایی و تولید قطعات با طراحی‌های پیچیده دارد. بااین‌حال، ماشین‌های آهنگری دورانی متداول به دلیل محدودیت‌های سینماتیکی ناشی از سازوکار ساده خروج از مرکزیت، با محدودیت‌های قابل‌توجهی مواجه هستند. سازوکار سینماتیک موازی با شش درجه آزادی (هگزاپاد) راه‌حلی مؤثر برای برطرف کردن این محدودیت‌ها ارائه می‌دهد. در این مطالعه، نظریه و کاربرد این سازوکار با موفقیت اجراشده است. سینماتیک معکوس هگزاپاد برای فرآیند آهنگری دورانی تطبیق داده و روشی مناسب برای ایجاد حرکت نوسانی مداری، ارائه‌شده است. برای بررسی جریان مواد در قالب پایینی، مدل‌سازی فیزیکی با استفاده از پلاستیسین انجام شد و آزمایش‌های تجربی متعددی با یک ماشین هگزاپاد صورت گرفت. شکل نهایی قطعه‌کار، میزان پرشدگی قالب و نیروهای آهنگری با روش‌ آهنگری سنتی مقایسه شد که نتایج بهبودیافته‌ای را نشان داد. مشاهده شد که الگوی حرکت در آهنگری دورانی تأثیر زیادی بر زمان و نیروی موردنیاز برای شکل‌دهی دارد. نیروی موردنیاز برای آهنگری دورانی با الگوی حرکت دایره‌ای 32 نیوتن و با الگوی حرکت سیاره‌ای 38 نیوتن بود، درحالی‌که در روش آهنگری سنتی نیروی بسیار بیشتری، حدود 200 نیوتن، نیاز است. همچنین مشخص شد که زمان لازم برای شکل‌دهی چرخ‌دنده مخروطی با استفاده از الگوی حرکت سیاره‌ای تقریباً نصف زمان موردنیاز با استفاده از الگوی حرکت دایره‌ای است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evolution of The Conventional Rotary Forging Machines to Six-DoF Parallel Kinematics Machines

نویسندگان English

Alireza Zarhoon
Mohammad Javad Nategh
Davood Manafi
Mechanical Engineering Department, Tarbiat Modares University
چکیده English

Rotary forging is an incremental bulk forming process, possessing salient advantages compared with the conventional forging, including reduced force, smoothness of operation, lower investment, apt for near net shaping and producing workpieces with intricate profiles. However, the conventional rotary forging machines suffer serious limitation in their kinematics, which originates from their simple eccentric mechanism of the actuating device. The parallel-kinematics hexapod mechanism with six degrees of freedom can circumvent this limitation. The theory and practice of this concept has been successfully implemented in the present study. The inverse kinematics of hexapod has been adapted to the kinematics of the rotary forging processes. This could yield a proper method to generate the orbitally rocking motion prevailing in the process. In order to investigate the material flow in the lower die, physical modeling was carried out by the use of plasticine and several experiments were conducted in a hexapod machine. The final shapes of the workpieces, the degrees of die filling, and the forging forces were compared with the conventional forging, indicating improved results. It was observed that the motion pattern in the rotary forging influences the time and the force required for forming. The maximum forces required for rotary forging using the circular and planetary motion patterns were 32 N and 38 N respectively. In comparison, conventional forging required a significantly higher force, approximately 200 N. The time required to form a bevel gear using planetary motion was almost half of the time needed for circular motion

کلیدواژه‌ها English

Rotary Forging
Obital Forging
Rocking Die
Hexapod
stewart platform
Parallel Kinematics
[1] Kherad G, Nategh MJ, Ghazawi MR. Investigation of Motion Profiles of Forming Tool in Orbital Forging Process. Proc 4th Conf Manufacturing Engineering,; Feb. 15-16; Tehran: Amir Kabir University of Technology; 1999. p. 176-84.
[2] Gu B, Han X, Hua L. Processing design and optimization on rotary forging of thin-walled structure. Thin-Walled Structures. 2021;162:107567.
[3] Han X, Hua L. Comparison between cold rotary forging and conventional forging. Journal of Mechanical Science and Technology. 2009;23(10):2668.
[4] Calmano S, Hesse D, Hoppe F, Traidl P, Sinz J, Groche P, editors. Orbital forming of flange parts under uncertainty. Applied Mechanics and Materials; 2015: Trans Tech Publ.
[5] Kovářík O, Čech J, Čapek J, Hajíček M, Klečka J, Siegl J. Mechanical properties of forged tungsten heavy alloys. Acta Polytechnica CTU Proceedings. 2020;27:149-54.
[6] Politis DJ, Politis NJ, Lin J, Dean TA. A review of force reduction methods in precision forging axisymmetric shapes. The International Journal of Advanced Manufacturing Technology. 2018;97(5):2809-33.
[7] Plančak M, Movrin D, Kačmarčik I, Stefanović M, Skakun P, Vilotić D. COMPARATIVE ANALYSIS OF CLASSICAL FORGING AND ORBITAL FORGING OF CROSS JOINT COMPONENT. Journal for Technology of Plasticity. 2015;40(2).
[8] Hosseini SV, Nategh MJ. A Feasibility Study on Performing Rotary Forging Process by Hexapod Table and Estimation of Forming Load for a Cylindrical Workpiece. Modares Mechanical Engineering. 2016;16(6):41-51.
[9] Li Z. Reconfiguration and tool path planning of hexapod machine tools: New Jersey Institute of Technology, Department of Mechanical Engineering; 2000.
[10] Aksenov L, Kunkin S. Development of rotary forging machines: from idea to additive technologies. Sciences of Europe. 2016(7-2):4-11.
[11] Nategh M, MehdiNejad M, editors. An investigation into the rotary forging process capabilities and load estimation. Proceeding of The 9th International Conference on Cold Forging; 1995.
[12] Sivam SSS, Sekar VU, Mishra A, Mondal A, Mishra S. Orbital cold forming technology-combining high quality forming with cost effectiveness-A review. Indian Journal of Science and Technology. 2016;9(38).
[13] Choi S, Na K, Kim J. Upper-bound analysis of the rotary forging of a cylindrical billet. Journal of Materials Processing Technology. 1997;67(1-3):78-82.
[14] Zhang M, editor Calculating force and energy during rotating forging. 3 rd International Conference on Rotary Metalworking Processes(ROMP 3); 1984.
[15] Rusz S, Dyja H. The influence of technological parameters on the rotary pressing process. Journal of materials processing technology. 2004;157:604-8.
[16] Liu G, Yuan S, Wang Z, Zhou D. Explanation of the mushroom effect in the rotary forging of a cylinder. Journal of Materials Processing Technology. 2004;151(1-3):178-82.
[17] Han X, Hua L. Effect of size of the cylindrical workpiece on the cold rotary-forging process. Materials & Design. 2009;30(8):2802-12.
[18] Hua L, Han X. 3D FE modeling simulation of cold rotary forging of a cylinder workpiece. Materials & Design. 2009;30(6):2133-42.
[19] Krishnamurthy B, Bylya O, Muir L, Conway A, Blackwell P. On the specifics of modelling of rotary forging processes. Computer Methods in Materials Science. 2017;17(1):22-9.
[20] Han X, Hu Y, Hua L. Cold orbital forging of gear rack. International Journal of Mechanical Sciences. 2016;117:227-42.
[21] Liu X, Zhu C, Sun S, Ma R. Rotary forging with multi-cone rolls. Journal of Manufacturing Processes. 2020;56:656-66.
[22] Ma RF, Zhu CD, Gao YF, Wei ZH. Research on forming technology of rotary forging with double symmetry rolls of large diameter: thickness ratio discs. Mechanical Sciences. 2021;12(1):625-38.
[23] Han X, Chen W, Hu X, Hua L, Chai F. Grain Refinement Mechanism of 5A06 Aluminum Alloy Sheets during Cold Rotary Forging. Materials. 2023 Mar 29;16(7):2754.
[24] Han X, Chen L, Hu X, Hua L, Chai F. Microstructure and mechanical property evolution mechanisms of 15Cr14Co12Mo5Ni2WA aviation gear steel during cold rotary forging. Journal of Materials Research and Technology. 2023 May 1;24:3005-22.
[25] Hu Y, Han X, Hua L, Zhuang W. Modeling for warping prediction and control in cold rotary forging of round plate. Journal of Materials Processing Technology. 2023 Apr 1;313:117865.
[26] Hu Y, Han X, Hua L, Zhuang W. Modeling for plastic instability in multi-directional rotary forging of thin-walled components with three ribs. Journal of Materials Processing Technology. 2024 Oct 1;331:118522.
[27] Hu X, Han X, Chai F, Zhuang W, Zheng F, Yin F, Xie L, Hua L. Efficiently manufacturing large-scale isotropic Al7075 alloy sheets with submicron grain by multidirectional rotary forging. Materials & Design. 2024 Feb 1;238:112713.
[28] Andreev VA, Karelin RD, Komarov VS, Cherkasov VV, Dormidontov NA, Laisheva NV, Yusupov VS. Influence of rotary forging and post-deformation annealing on mechanical and functional properties of titanium nickelide. Metallurgist. 2024 Jun 4:1-8.
[29] Abd-Eltwab AA, Elsyed Ayoub W, El-Sheikh MN, Saied EK, Ghazaly NM, Gomaa AA. An Investigation into Forming of Gears Using Rotary Forging Process. Manufacturing Technology. 2024 Sep 1;24(4):539-51.
[30] Hesselbach J, Behrens BA, Dietrich F, Rathmann S, Poelmeyer J. Flexible forming with hexapods. Production Engineering. 2007 Dec;1:429-36.
[31] Dindorf R, Wos P. Control of integrated electro-hydraulic servo-drives in a translational parallel manipulator. Journal of Mechanical Science and Technology. 2019 Nov;33:5437-48.
[32] Tan S, Liang F, Chen L, Lin Z. The kinematic modeling and simulation of an adjustable pivot point of Six Degree-Of-Freedom (DOF) Parallel Robot. InJournal of Physics: Conference Series 2021 (Vol. 1739, No. 1, p. 012034). IOP Publishing.
[33] Spong MW, Hutchinson S, Vidyasagar M. Robot modeling and control. John Wiley & Sons; 2020 Mar 30.
[34] Wójcik Ł, Lis K, Pater Z. Plastometric tests for plasticine as physical modelling material. Open Engineering. 2016 Dec 30;6(1).