[1] M.A. Trimzi, Y.B. Ham, B.C. An, J.H. Park, S.N. Yun, Numerical analysis and simulation of an impulse driven piezoelectric needle-free jet injector, Journal of Mechanical Science and Technology 33 (2019) 3851–3858. https://doi.org/10.1007/s12206-019-0728-9.
[2] H. Li, J. Liu, K. Li, Y. Liu, Piezoelectric micro-jet devices: A review, Sens Actuators A Phys 297 (2019). https://doi.org/10.1016/j.sna.2019.111552.
[3] H. Peng, J. Deng, G. Deng, C. Zhou, J. Li, Design and Research of a Novel Piezostack-Driven Jetting Dispenser With a Diamond Spring, IEEE Trans Compon Packaging Manuf Technol 12 (2022) 1849–1856. https://doi.org/10.1109/TCPMT.2022.3218348.
[4] G. Deng, W. Cui, C. Zhou, J. Li, A piezoelectric jetting dispenser with a pin joint, Optik (Stuttg) 175 (2018) 163–171. https://doi.org/10.1016/j.ijleo.2018.08.132.
[5] G. Deng, N. Wang, C. Zhou, J. Li, A Simplified Analysis Method for the Piezo Jet Dispenser with a Diamond Amplifier, Sensors 18 (2018) 2115. https://doi.org/10.3390/s18072115.
[6] S. Zhou, P. Yan, Design and Analysis of a Hybrid Displacement Amplifier Supporting a High-Performance Piezo Jet Dispenser, Micromachines (Basel) 14 (2023) 322. https://doi.org/10.3390/mi14020322.
[7] Z. Bu, S. Lin, X. Huang, A. Li, D. Wu, Y. Zhao, Z. Luo, L. Wang, A novel piezostack-driven jetting dispenser with corner-filleted flexure hinge and high-frequency performance, Journal of Micromechanics and Microengineering 28 (2018) 75001. https://doi.org/10.1088/1361-6439/aab80c.
[8] Y. Yang, S. Gu, Q. Lv, J. Liu, Z. Yang, C. Li, H. Tian, Influence of needle impact velocity on the jetting effect of a piezoelectric needle-collision jetting dispenser, AIP Adv 9 (2019). https://doi.org/10.1063/1.5086258.
[9] M. Wu, R.M. Zhao, J.N. Chen, J.J. Zheng, B.K. Shao, Design and performance analysis of a flexible-hinged piezoelectric driving dispenser, Smart Mater Struct 33 (2024). https://doi.org/10.1088/1361-665X/ad2c69.
[10] C. Zhou, J. Duan, G. Deng, J. Li, A Novel High-Speed Jet Dispenser Driven by Double Piezoelectric Stacks, IEEE Transactions on Industrial Electronics 64 (2017) 412–419. https://doi.org/10.1109/TIE.2016.2598805.
[11] R. Zhao, S. Lv, G. Chen, J. Chen, Q. Wang, M. Wu, J. Zheng, Design and experiment of a new double needle type piezoelectric jetting dispenser, Smart Mater Struct 32 (2023). https://doi.org/10.1088/1361-665X/acb745.
[12] Lu, Chen, Zheng, Zhao, Long, Simulation and Experiment on Droplet Volume for the Needle-Type Piezoelectric Jetting Dispenser, Micromachines (Basel) 10 (2019) 623. https://doi.org/10.3390/mi10090623.
[13] M.A. Trimzi, Y.B. Ham, B.C. An, Y.M. Choi, J.H. Park, S.N. Yun, Development of a Piezo-Driven Liquid Jet Dispenser with Hinge-Lever Amplification Mechanism, Micromachines (Basel) 11 (2020) 117. https://doi.org/10.3390/mi11020117.
[14] C. Zhou, G. Deng, J. Li, J. Duan, Flow Channel Influence of a Collision-Based Piezoelectric Jetting Dispenser on Jet Performance, Sensors 18 (2018) 1270. https://doi.org/10.3390/s18041270.
[15] S. Lu, J. Zhang, Y. Liu, H. Zheng, C. Ren, W. Liu, Droplet formation study of a liquid micro-dispenser driven by a piezoelectric actuator, Smart Mater Struct 28 (2019). https://doi.org/10.1088/1361-665X/ab0b70.
[16] S. Salehian, P.F. Rad, H. Ghafarirad, Design and Analysis of Piezoelectric Aided Dispensing System for Fluid Droplet Generation, in: 2023 11th RSI International Conference on Robotics and Mechatronics (ICRoM), 2023: pp. 756–761. https://doi.org/10.1109/ICRoM60803.2023.10412545.