[1] M.M. Mekonnen, A.Y. Hoekstra, Sustainability: Four billion people facing severe water scarcity, Sci Adv 2 (2016) 1–7. https://doi.org/10.1126/sciadv.1500323.
[2] C.J. Vörösmarty, P. Green, J. Salisbury, R.B. Lammers, Global water resources: Vulnerability from climate change and population growth, Science (1979) 289 (2000) 284–288. https://doi.org/10.1126/science.289.5477.284.
[3] M. Qadir, G.C. Jiménez, R.L. Farnum, L.L. Dodson, V. Smakhtin, Fog water collection: Challenges beyond technology, Water (Switzerland) 10 (2018) 1–10. https://doi.org/10.3390/w10040372.
[4] K.C. Park, S.S. Chhatre, S. Srinivasan, R.E. Cohen, G.H. McKinley, Optimal design of permeable fiber network structures for fog harvesting, Langmuir 29 (2013) 13269–13277. https://doi.org/10.1021/la402409f.
[5] Y. Jiang, C. Machado, K.K. Park, From capture to transport: A review of engineered surfaces for fog collection, Droplet 2 (2023). https://doi.org/10.1002/dro2.55.
[6] A. Phys, Fog collection on a superhydrophilic wire Fog collection on a superhydrophilic wire, 083701 (2019) 1–6. https://doi.org/10.1063/1.5087144.
[7] J. Knapczyk-Korczak, P.K. Szewczyk, D.P. Ura, K. Berent, U. Stachewicz, Hydrophilic nanofibers in fog collectors for increased water harvesting efficiency, RSC Adv 10 (2020) 22335–22342. https://doi.org/10.1039/d0ra03939j.
[8] M.A.K. Azad, D. Ellerbrok, W. Barthlott, K. Koch, Fog collecting biomimetic surfaces: Influence of microstructure and wettability, Bioinspir Biomim 10 (2015) 16004. https://doi.org/10.1088/1748-3190/10/1/016004.
[9] M. Rajaram, X. Heng, M. Oza, C. Luo, Colloids and Surfaces A : Physicochemical and Engineering Aspects Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes, Colloids Surf A Physicochem Eng Asp 508 (2016) 218–229. https://doi.org/10.1016/j.colsurfa.2016.08.034.
[10] J.H. Kang, J. Lee, J.Y. Kim, J.W. Moon, H.S. Jang, Effect of Mesh Wettability Modification on Atmospheric and Industrial Fog Harvesting, 9 (2021) 1–11. https://doi.org/10.3389/fphy.2021.680641.
[11] C. Liu, R. Sun, J. Zhao, Y. Hu, J. Mo, Journal of Environmental Chemical Engineering Enhancement of water collection efficiency by optimizing hole size and ratio of hydrophilic-superhydrophobic area on hybrid surfaces, J Environ Chem Eng 11 (2023) 111082. https://doi.org/10.1016/j.jece.2023.111082.
[12] D. Yang, A.G. Ramu, D. Choi, Multifunctional integrated pattern for enhancing fog harvesting water unidirectional transport in a heterogeneous pattern, NPJ Clean Water 7 (2024) 1–12. https://doi.org/10.1038/s41545-024-00317-6.
[13] R. Ghosh, C. Patra, P. Singh, R. Ganguly, R.P. Sahu, Influence of metal mesh wettability on fog harvesting in industrial cooling towers, Appl Therm Eng 181 (2020) 115963. https://doi.org/10.1016/j.applthermaleng.2020.115963.
[14] J. Park, C. Lee, S. Lee, H. Cho, M.W. Moon, S.J. Kim, Clogged water bridges for fog harvesting, Soft Matter 17 (2021) 136–144. https://doi.org/10.1039/d0sm01133a.
[15] W. Shi, M.J. Anderson, J.B. Tulkoff, B.S. Kennedy, J.B. Boreyko, Fog Harvesting with Harps, ACS Appl Mater Interfaces 10 (2018) 11979–11986. https://doi.org/10.1021/acsami.7b17488.
[16] N.G. Kowalski, W. Shi, B.S. Kennedy, J.B. Boreyko, Optimizing Fog Harps, ACS Appl Mater Interfaces 13 (2021) 38826–38834. https://doi.org/10.1021/acsami.1c08995.
[17] W. Shi, L.H. De Koninck, B.J. Hart, N.G. Kowalski, A.P. Fugaro, T.W. Van Der Sloot, R.S. Ott, B.S. Kennedy, J.B. Boreyko, Harps under Heavy Fog Conditions: Superior to Meshes but Prone to Tangling, ACS Appl Mater Interfaces 12 (2020) 48124–48132. https://doi.org/10.1021/acsami.0c12329.
[18] J. Li, R. Ran, H. Wang, Y. Wang, Y. Chen, S. Niu, P.E. Arratia, S. Yang, Aerodynamics-assisted, efficient and scalable kirigami fog collectors, Nat Commun 12 (2021). https://doi.org/10.1038/s41467-021-25764-4.
[19] Z. Peng, Y. Fu, Z. Guo, Origami-like 3D Fog Water Harvestor with Hybrid Wettability for Efficient Fog Harvesting, ACS Appl Mater Interfaces 15 (2023) 38110–38123. https://doi.org/10.1021/acsami.3c07343.
[20] J. de D. Rivera, Aerodynamic collection efficiency of fog water collectors, Atmos Res 102 (2011) 335–342. https://doi.org/10.1016/j.atmosres.2011.08.005.
[21] A.A. Elshennawy, M.Y. Abdelaal, A.M. Hamed, M.M. Awad, Evaluating Mesh Geometry and Shade Coefficient for Fog Harvesting Collectors, Water Resources Management 37 (2023) 6107–6126. https://doi.org/10.1007/s11269-023-03644-4.
[22] M. Azeem, M.T. Noman, J. Wiener, M. Petru, P. Louda, Structural design of efficient fog collectors: A review, Environ Technol Innov 20 (2020) 101169. https://doi.org/10.1016/j.eti.2020.101169.
[23] P.B. Bintein, A. Cornu, F. Weyer, N. De Coster, N. Vandewalle, D. Terwagne, Kirigami fog nets: how strips improve water collection, NPJ Clean Water 6 (2023) 1–7. https://doi.org/10.1038/s41545-023-00266-6.
[24] Y. Jiang, C. Machado, S. Savarirayan, N.A. Patankar, K.C. Park, Onset time of fog collection, Soft Matter 15 (2019) 6779–6783. https://doi.org/10.1039/c9sm01105f.