[1] Lemaitre J. A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology. 1985;107(1):83-9.
[2] Gurson AL. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media. Journal of Engineering Materials and Technology. 1977;99(1):2-15.
[3] Sadeghi Nezhad MS, Haji Aboutalebi F, Mashayekhi M. Presentation of a new 2D fast and straightforward version for the Lemaitre’s ductile damage model. Mechanics Based Design of Structures and Machines.1-29.
[4] Salimpour E. Experimental determination and numerical implementation of ductile damage parameters of Al 2024-O. mdrsjrns. 2018;18(2):45-52.
[5] Khaleghi H, Amiri-Rad A, Mashayekhi M. A thermodynamically consistent continuum damage model for time-dependent failure of thermoplastic polymers. International Journal of Plasticity. 2022;154:103278.
[6] Pijaudier‐Cabot G, Bažant Z. Nonlocal Damage Theory. Journal of Engineering Mechanics. 1987;113(10):1512-33.
[7] Jirásek M. Non-local damage mechanics with application to concrete. Revue Française de Génie Civil. 2004;8(5-6):683-707.
[8] Bažant Z, Jirásek M. Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress. Journal of Engineering Mechanics. 2002;128(11):1119-49.
[9] de Borst R. Damage, Material Instabilities, and Failure. Encyclopedia of Computational Mechanics: John Wiley & Sons, Ltd; 2004.
[10] Badnava H, Mashayekhi M, Kadkhodaei M. An anisotropic gradient damage model based on microplane theory. International Journal of Damage Mechanics. 2015;25(3):336-57.
[11] Peerlings RHJ, de Borst R, Brekelmans WAM, Geers MGD. Gradient-enhanced damage modelling of concrete fracture. Mechanics of Cohesive-frictional Materials. 1998;3(4):323-42.
[12] Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM. A critical comparison of nonlocal and gradient-enhanced softening continua. International Journal of Solids and Structures. 2001;38(44–45):7723-46.
[13] Badnava H, Mashayekhi M, Kadkhodaei M, Amiri-Rad A. A non-local implicit gradient-enhanced model for thermomechanical behavior of shape memory alloys. Journal of Intelligent Material Systems and Structures. 2018;29(9):1818-34.
[14] Verhoosel CV, de Borst R. A phase-field model for cohesive fracture. International Journal for Numerical Methods in Engineering. 2013;96(1):43-62.
[15] Badnava H, Msekh MA, Etemadi E, Rabczuk T. An h-adaptive thermo-mechanical phase field model for fracture. Finite Elements in Analysis and Design. 2018;138:31-47.
[16] Badnava H, Etemadi E, Msekh MA. A Phase Field Model for Rate-Dependent Ductile Fracture. Metals [Internet]. 2017; 7(5).
[17] Marandi SM, Nourbakhsh SH, Botshekanan Dehkordi M, Badnava H. Finite element implementation of coupled temperature-rate dependent fracture using the phase field model. Mechanics of Materials. 2020;148:103449.
[18] Marandi SM, Badnava H, Dehkordi MB, Nourbakhsh SH. Phase-field modeling of coupled anisotropic plasticity–ductile fracture in rate-dependent solids. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2021;43(4):229.
[19] Badnava H. Ductile fracture modelling based on the Drucker-Prager plasticity and phase field approach. mdrsjrns. 2018;18(3):351-60.
[20] Mousavion M, Mashayekhi M, Jamshidian M, Badnava H. Implementation of the phase-field method for brittle fracture and application to porous structures. mdrsjrns. 2018;18(7):217-25.
[21] Ganjiani M. A damage model incorporating dynamic plastic yield surface. Journal of Computational Applied Mechanics. 2016;47(1):11-24.
[22] Aboutalebi FH. Numerical Simulation of Cutting and Fine Cutting Processes by Lemaitre's Ductile Damage Model in Conjunction with Large Deformation Theory. mdrsjrns. 2013;13(6):96-102.
[23] Ali Tavoli M, Gohari Rad S, Zajkani A, Darvizeh A. The Influence of Pre- Mechanical Friction Stir Processing on Stress State dependent Ductile Damage of 7075-T6 Aluminum Alloy. mdrsjrns. 2017;17(1):365-74.
[24] Zhou X, Feng B. A smeared-crack-based field-enriched finite element method for simulating cracking in quasi-brittle materials. Theoretical and Applied Fracture Mechanics. 2023;124:103817.
[25] Kim MS, Kim HT, Choi YH, Kim JH, Kim SK, Lee J-M. A New Computational Method for Predicting Ductile Failure of 304L Stainless Steel. Metals. 2022; 12(8).
[26] Ben Othmen K, Haddar N, Jegat A, Manach PY, Elleuch K. Ductile fracture of AISI 304L stainless steel sheet in stretching. International Journal of Mechanical Sciences. 2020;172:105404.
[27] Abbassi F, Belhadj T, Mistou S, Zghal A. Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming. Materials & Design. 2013;45:605-15.
[28] Haghani M, Neya BN, Ahmadi MT, Amiri JV. Comparative Study of Smeared Crack and Extended Finite Element Method for Predicting the Crack Propagation in Concrete Gravity Dams. Journal of Earthquake Engineering. 2022;26(16):8577-610.
[29] Feist C, Hofstetter G. An embedded strong discontinuity model for cracking of plain concrete. Computer Methods in Applied Mechanics and Engineering. 2006;195(52):7115-38.
[30] de Borst R. Numerical aspects of cohesive-zone models. Engineering Fracture Mechanics. 2003;70(14):1743-57.
[31] de Borst R, Gutiérrez MA, Wells GN, Remmers JJC, Askes H. Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis. International Journal for Numerical Methods in Engineering. 2004;60(1):289-315.
[32] Khoei AR. Extended Finite Element Formulation. Extended Finite Element Method2014. p. 31-76.
[33] Hooputra H, Gese H, Dell H, Werner H. A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashworthiness. 2004;9(5):449-64.
[34] El-Magd E, Gese H, Tham R, Hooputra H, Werner H. Fracture Criteria for Automobile Crashworthiness Simulation of Wrought Aluminium Alloy Components. Materialwissenschaft und Werkstofftechnik. 2001;32(9):712-24.
[35] Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21(1):31-48.
[36] Besson J, Pineau A, Deschamps A. The role of microstructure in shear failure. International Journal of Fracture. 2001;109(1): 3-23.