مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شبیه‌سازی سه‌بعدی محفظه احتراق حلقوی یک میکروتوربین با مخلوط هیدروژن-متان و مدل احتراقی نیمه پیش مخلوط

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه شهید بهشتی
چکیده
این مطالعه به بررسی احتراق مخلوط هیدروژن و متان در محفظه احتراق حلقوی میکروتوربین C30 پرداخته است. هدف اصلی تحقیق ارزیابی تأثیر احتراق پیش مخلوط متان و هیدروژن بر میزان آلایندگی و دمای خروجی در یک محفظه احتراق حلقوی است. شبیه‌سازی‌های انجام شده با استفاده از مدل احتراقی نیمه پیش‌آمیخته و مدل توربولانسی k-ε انجام شده و از تابع چگالی احتمال PDF برای شبیه‌سازی واکنش‌های شیمیایی استفاده می‌شود. برای تحلیل دقیق نتایج در رابطه با میزان آلایندگی تولیدی، تحلیل و مقایسه در دمای ورودی توربین ثابت انجام شد. نتایج نشان می‌دهند که با افزودن هیدروژن به متان حتی در دمای ورودی توربین ثابت به علت افزایش دمای شعله در مقایسه با متان خالص، میزان آلاینده NOx افزایش پیدا می‌کند، اما می‌تواند به کاهش مصرف سوخت تا 35 درصد کمک کند. همچنین مشخص شد که استفاده از مخلوط 60 درصد متان و 40 درصد هیدروژن موجب کاهش 61 درصدی در تولید CO2 می‌شود. این مطالعه نشان داد می‌توان به علت پیش مخلوط بودن سوخت و هوا، هندسه حلقوی و الگوی چرخشی جریان در سراسر محفظه احتراق، در ترکیب سوخت شامل 30 درصد هیدروژن، تولید NOx را به ppm 1/16 رساند، که به طور قابل توجهی کمتر از مقدار ppm 46 گزارش شده در مطالعات پیشین است. همچنین میزان آلاینده CO با افزایش سهم هیدروژن در سوخت 16 درصد کاهش پیدا می‌کند. این نتایج نشان می‌دهد که محفظه‌ احتراق‌های حلقوی با جریان پیش‌مخلوط و استفاده از ترکیب سوخت هیدروژن و متان، پتانسیل بالایی برای کاهش آلاینده‌ها و بهینه‌سازی مصرف سوخت دارند
کلیدواژه‌ها

موضوعات


عنوان مقاله English

3D Simulation of the Annular Combustion Chamber of a Micro-Turbine with Hydrogen-Methane Mixture and Partially Premixed Combustion Model

نویسندگان English

Aref Sohrabi
Seyyed mahdi Mirsajedi
Shahid Beheshti University
چکیده English

This study investigates the combustion of hydrogen-methane mixtures in the annular combustion chamber of a C30 microturbine. The primary objective is to evaluate the impact of premixed methane-hydrogen combustion on pollutant emissions and outlet temperature in an annular combustion chamber. Simulations were performed using a partially premixed combustion model and the k-ε turbulence model, employing the Probability Density Function (PDF) approach for chemical reaction modeling. To ensure a detailed analysis of pollutant emissions, comparisons were conducted at a constant turbine inlet temperature. The results indicate that adding hydrogen to methane increases NOx emissions due to the higher flame temperature compared to pure methane, even at constant turbine inlet temperatures. However, this blend can reduce fuel consumption by up to 35%. Additionally, a fuel mixture of 60% methane and 40% hydrogen results in a 61% reduction in CO2 emissions. The study further revealed that, owing to the premixed nature of the fuel-air mixture, the annular geometry, and the swirling flow pattern within the combustion chamber, a fuel blend containing 30% hydrogen can lower NOx emissions to 16.1 ppm—significantly less than the 46 ppm reported in previous studies. Moreover, increasing the hydrogen fraction in the fuel reduced CO emissions by 16%. These findings demonstrate that annular combustion chambers with premixed flows and hydrogen-methane fuel blends have considerable potential for reducing pollutant emissions and optimizing fuel consumption

کلیدواژه‌ها English

Microturbine
Combustion chamber
Hydrogen
Premixed Combustion
1. Therkelsen P, Mauzey J, McDonell V, Samuelsen S, editors. Evaluation of a low emission gas turbine operated on hydrogen. Turbo Expo: Power for Land, Sea, and Air; 2006.
2. Therkelsen P, Werts T, McDonell V, Samuelsen S. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine. Journal of Engineering for Gas Turbines and Power. 2009;131(3).
3. Reale F, Calabria R, Chiariello F, Pagliara R, Massoli P. A micro gas turbine fuelled by methane-hydrogen blends. Applied Mechanics and Materials. 2012;232:792-6.
4. Lu J, Fu Z, Liu J, Pan W. Influence of air distribution on combustion characteristics of a micro gas turbine fuelled by hydrogen-doped methane. Energy Reports. 2022;8:207-16.
5. Di Nardo A, Bo A, Calchetti G, Giacomazzi E, Messina G. Study on the fuel flexibility of a microgas turbine combustor burning different mixtures of H2, CH4, and CO2. Journal of Engineering for Gas Turbines and Power. 2020;142(6):061001.
6. Shih H-Y, Liu C-R. A computational study on the combustion of hydrogen/methane blended fuels for a micro gas turbines. International Journal of Hydrogen Energy. 2014;39(27):15103-15.
7. Du Toit M, Engelbrecht N, Oelofse SP, Bessarabov D. Performance evaluation and emissions reduction of a micro gas turbine via the co-combustion of H2/CH4/CO2 fuel blends. Sustainable Energy Technologies and Assessments. 2020;39:100718.
8. Meziane S, Bentebbiche A. Numerical study of blended fuel natural gas-hydrogen combustion in rich/quench/lean combustor of a micro gas turbine. International journal of hydrogen energy. 2019;44(29):15610-21.
9. De Robbio R. Innovative combustion analysis of a micro-gas turbine burner supplied with hydrogen-natural gas mixtures. Energy Procedia. 2017;126:858-66.
10. Serbin S, Burunsuz K, Chen D, Kowalski J. Investigation of the characteristics of a low-emission gas turbine combustion chamber operating on a mixture of natural gas and hydrogen. Polish Maritime Research. 2022;29(2):64-76.
11. Funke H-W, Beckmann N, Abanteriba S. An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications. International Journal of Hydrogen Energy. 2019;44(13):6978-90.
12. Carusotto S, Goel P, Baratta M, Misul DA, Salvadori S, Cardile F, et al. Combustion Characterization in a Diffusive Gas Turbine Burner for Hydrogen-Compliant Applications. Energies. 2022;15(11):4117.
13. Nam J, Lee Y, Joo S, Yoon Y, Yoh JJ. Numerical analysis of the effect of the hydrogen composition on a partially premixed gas turbine combustor. International Journal of Hydrogen Energy. 2019;44(12):6278-86.
14. Reale F, Sannino R. Water and steam injection in micro gas turbine supplied by hydrogen enriched fuels: Numerical investigation and performance analysis. International Journal of Hydrogen Energy. 2021;46(47):24366-81.
15. Lefebvre AH, Ballal DR. Gas turbine combustion: alternative fuels and emissions: CRC press; 2010.
16. aghayari m, Tabejamaat S. Optimization of Micro Gas Turbine Combustion Chamber by Changing the Swirler Numerically and Experimentally. Modares Mechanical Engineering. 2022;22(7):473-83.
17. Wright ML, Lewis AC. Decarbonisation of heavy-duty diesel engines using hydrogen fuel: a review of the potential impact on NOx emissions. Environmental Science: Atmospheres. 2022;2(5):852-66.
18. Kikuchi K, Hori T, Akamatsu F. Fundamental Study on Hydrogen Low-NOx Combustion Using Exhaust Gas Self-Recirculation. Processes [Internet]. 2022; 10(1).
19. Krishnan Unni J, Bhatia D, Dutta V, Das L, Jilakara S, Subash GP. Development of Hydrogen Fuelled Low NO x Engine with Exhaust Gas Recirculation and Exhaust after Treatment. SAE International Journal of Engines. 2017;10.
20. Shchepakina EA, Zubrilin IA, Kuznetsov AY, Tsapenkov KD, Antonov DV, Strizhak PA, et al. Physical and Chemical Features of Hydrogen Combustion and Their Influence on the Characteristics of Gas Turbine Combustion Chambers. Applied Sciences [Internet]. 2023; 13(6).
21. Stępień Z. A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges. Energies [Internet]. 2021; 14(20).
22. Ommi F, Azimi M. Most effective combustion technologies for reducing Nox emissions in aero gas turbines. The International Journal of Multiphysics. 2012;6:417-24.
23. Cameretti MC. Modelling of a Hybrid Solar Micro-Gas Turbine fuelled by biomass from agriculture product. Energy Reports. 2020;6:105-16.
24. Abagnale C, Cameretti MC, De Robbio R, Tuccillo R. Thermal cycle and combustion analysis of a solar-assisted micro gas turbine. Energies. 2017;10(6):773.
25. Chen J, Mitchell MG, Nourse JG, editors. Development of Ultra-Low Emission Diesel Fuel-Fired Microturbine Engines for Vehicular Heavy Duty Applications: Combustion Modifications. Turbo Expo: Power for Land, Sea, and Air; 2010.
26. Bolszo C, McDonell V. Emissions optimization of a biodiesel fired gas turbine. Proceedings of the Combustion Institute. 2009;32(2):2949-56.
27. Patankar S. Numerical heat transfer and fluid flow: CRC press; 2018.
28. Chen S, Zhao D, Li HKH, Ng TY, Jin X. Numerical study of dynamic response of a jet diffusion flame to standing waves in a longitudinal tube. Applied Thermal Engineering. 2017;112:1070-82.
29. Fantozzi F, Laranci P, Bianchi M, De Pascale A, Pinelli M, Cadorin M, editors. CFD simulation of a microturbine annular combustion chamber fuelled with methane and biomass pyrolysis syngas: Preliminary results. Turbo Expo: Power for Land, Sea, and Air; 2009.
30. Manual U. ANSYS FLUENT 21.1. Theory Guide. 2009;67.
31. Poinsot T, Veynante D. Theoretical and numerical combustion: RT Edwards, Inc.; 2005.
32. Xiao C, Omidi M, Surendar A, Alizadeh Aa, Bokov DO, Binyamin, et al. Simulation of combustion flow of methane gas in a premixed low-swirl Burner using a partially premixed combustion model. Journal of Thermal Science. 2022;31(5):1663-81.
33. Choi B-C, Kim H-T. FLAME STABILITY OF CO/H 2 SYNGAS IN THE DIFFUSION FLAME BY USING LAB-SCALE BURNER. Environmental Engineering Research. 2003;8(4):193-201.
34. Medhat M, Yehia M, Franco MC, Rocha RC. A numerical prediction of stabilized turbulent partially premixed flames using ammonia/hydrogen mixture. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2021;87(3):113-33.
35. Caldeira-Pires A, Heitor M, Carvalho Jr J. Characteristics of nitric oxide formation rates in turbulent nonpremixed jet flames. Combustion and flame. 2000;120(3):383-91.
36. De Soete GG. Overall reaction rates of NO and N2 formation from fuel nitrogen. Symposium (international) on combustion: Elsevier; 1975. p. 1093-102.
37. Hussain T, Talibi M, Balachandran R. Investigating the effect of local addition of hydrogen to acoustically excited ethylene and methane flames. International Journal of Hydrogen Energy. 2019;44(21):11168-84.
38. Epa U. United States environmental protection agency. Quality assurance guidance document-model quality assurance project plan for the PM ambient air. 2001;2:12.