1. Buitrago, B.L., S.K. García-Castillo, and E. Barbero, Influence of shear plugging in the energy absorbed by thin carbon-fibre laminates subjected to high-velocity impacts. Composites Part B: Engineering, 2013. 49: p. 86-92.
2. Abtew, M.A., et al., Ballistic impact mechanisms–a review on textiles and fibre-reinforced composites impact responses. Composite structures, 2019. 223: p. 110966.
3. Wang, J., A.M. Waas, and H. Wang, Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Composite Structures, 2013. 96: p. 298-311.
4. Griškevičius, P., et al., Experimental and numerical study of impact energy absorption of safety important honeycomb core sandwich structures. Materials science, 2010. 16(2): p. 119-123.
5. Ivañez, I. and S. Sanchez-Saez, Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core. Composite Structures, 2013. 106: p. 716-723.
6. Feng, D. and F. Aymerich, Effect of core density on the low-velocity impact response of foam-based sandwich composites. Composite Structures, 2020. 239: p. 112040.
7. Andrew, J.J., et al., Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review. Composite Structures, 2019. 224: p. 111007.
8. Zenkert, D., et al., Damage tolerance assessment of composite sandwich panels with localised damage. Composites Science and Technology, 2005. 65(15-16): p. 2597-2611.
9. Sun, G., et al., High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations. International Journal of Impact Engineering, 2018. 122: p. 119-136.
10. Khodadadi, A., et al., High velocity impact behavior of Kevlar/rubber and Kevlar/epoxy composites: a comparative study. Composite Structures, 2019. 216: p. 159-167.
11. Sarasini, F., et al., Static and dynamic characterization of agglomerated cork and related sandwich structures. Composite Structures, 2019. 212: p. 439-451.
12. Boria, S., et al., Green sandwich structures under impact: experimental vs numerical analysis. Procedia Structural Integrity, 2018. 12: p. 317-329.
13. Silva, F., M. De Moura, and A. Magalhães, Low velocity impact behaviour of a hybrid carbon‐epoxy/cork laminate. Strain, 2017. 53(6): p. e12241.
14. Castilho, T., L. Sutherland, and C.G. Soares, Impact resistance of marine sandwich composites. Maritime Technology and Engineering. London: Taylor & Francis Group, 2015: p. 607-618.
15. Ptak, M., et al., Assessing impact velocity and temperature effects on crashworthiness properties of cork material. International Journal of Impact Engineering, 2017. 106: p. 238-248.
16. Sánchez-Sáez, S., E. Barbero, and J. Cirne, Experimental study of agglomerated-cork-cored structures subjected to ballistic impacts. Materials Letters, 2011. 65(14): p. 2152-2154.
17. Amaro, A.M., et al., The high-velocity impact behaviour of kevlar composite laminates filled with cork powder. Applied Sciences, 2020. 10(17): p. 6108.
18. Ivañez, I., et al., High-velocity impact behaviour of damaged sandwich plates with agglomerated cork core. Composite Structures, 2020. 248: p. 112520.
19. Gomez, A., E. Barbero, and S. Sanchez-Saez, Modelling of carbon/epoxy sandwich panels with agglomerated cork core subjected to impact loads. International Journal of Impact Engineering, 2022. 159: p. 104047.
20. Gomez, A., S. Sanchez-Saez, and E. Barbero, Experimental analysis of the impact behaviour of sandwich panels with sustainable cores. Composites Part A: Applied Science and Manufacturing, 2023. 166: p. 107383.
21. Sutherland, L. and C.G. Soares, Impact resistance of cork-skinned marine PVC/GRP sandwich laminates. Thin-Walled Structures, 2022. 180: p. 109830.
22. Sergi, C., et al., Experimental and numerical analysis of the ballistic response of agglomerated cork and its bio-based sandwich structures. Engineering Failure Analysis, 2022. 131: p. 105904.
23. Gómez, A., S. Sanchez-Saez, and E. Barbero, Compression impact behaviour of agglomerated cork at intermediate strain rates. European Journal of Wood and Wood Products, 2021. 79(2): p. 381-396.