مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدل سازی ریاضی و بررسی عملکرد آب شیرین کن صفحه تخت با مواد متخلخل و تغییر فاز دهنده از دیدگاه انرژی و اگزرژی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران
2 دانشگاه صنعتی امیرکبیر، تهران، ایران
چکیده
در سال‌های اخیر مشکل کمبود آب شرب به یکی از جدی‌ترین چالش های بشر تبدیل شده است. به همین دلیل، بررسی عملکرد سیستم‌های تصفیه آب از موضوعات مورد علاقه محققین بوده است. همچنین با توجه به افزایش مصرف انرژی و استفاده بیش از حد از سوخت‌های فسیلی، بکارگیری انرژی‌های تجدیدپذیر مانند انرژی خورشیدی در حال فراگیر شدن می‌باشد. در این پژوهش، مدل سازی ریاضی آب شیرین‌کن خورشیدی صفحه تخت با مواد متخلخل و مواد تغییرفازدهنده و بررسی عملکرد آن از دیدگاه انرژی و اگزرژی مورد بررسی قرار گرفته است. به منظور بررسی عملکرد آب شیرین کن، روابط موازنه انرژی برای بخش‌های مختلف شامل شیشه‌، آب شور، صفحه جاذب و ماده تغییر فاز دهنده نوشته شده و با حل معادلات حاکم با استفاده از نرم‌ افزار متلب، تأثیر حضور ماده متخلخل و تغییر فاز دهنده به عنوان نوآوری پژوهش حاضر بر بهره‌وری آب‌شیرین‌کن و بازده انرژی و اگزرژی مورد ارزیابی قرار گرفته است. نتایج نشان می‌دهد، بازده کلی انرژی و اگزرژی با حضور همزمان ماده متخلخل و تغییر فاز دهنده به ترتیب به مقدار 07/15% و 04/1% نسبت به حالت پایه، در حالت ماده تغییر فاز دهنده به ترتیب به مقدار 04/11% و 62/0% نسبت به حالت پایه و در حالت ماده متخلخل به ترتیب به مقدار 15/3% و 32/0% نسبت به حالت پایه بهبود می‌یابد. همچنین تولید آب شیرین در حالت حضور همزمان ماده متخلخل و تغییر فاز دهنده، ماده تغییر فاز دهنده به تنهایی و ماده متخلخل به تنهایی به ترتیب به مقدار 72/23%، 88/17% و 17/6% بیشتر از حالت پایه است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Mathematical Modeling and Performance Evaluation of Flat-Plate Solar Still with Porous and Phase Change Materials from an Energy and Exergy Perspective

نویسندگان English

Kamiyar Karimi Birgani 1
Milad Setareh 1
Hassan Basirat Tabrizi 2
1 Jundi-Shapur University of Technology, Dezful, Iran
2 Amirkabir University of Technology, Tehran, Iran
چکیده English

In recent years, the issue of drinking water scarcity has emerged as one of the most critical challenges facing humanity. Consequently, the evaluation of water purification systems' performance has garnered significant interest among researchers. Additionally, given the rise in energy consumption and the excessive reliance on fossil fuels, the adoption of renewable energy sources such as solar energy is becoming increasingly prevalent. This study presents a mathematical modeling of the energy and exergy of a flat-plate solar still system utilizing porous materials and phase change materials. To assess the performance of the system, energy balance equations are formulated for various components, including the glass, brine, absorber plate, and phase change material. These equations are solved using MATLAB software to evaluate the impact of incorporating porous and phase change materials as innovative methods on the efficiency and energy and exergy performance of solar still. Results indicate that the overall energy and exergy efficiencies improve by 15.07% and 1.04%, respectively, in the simultaneous presence of porous and phase change materials compared to the base case. In the case of phase change material alone, the improvements are 11.04% and 0.62%, respectively, compared to the base case. For porous material alone, the improvements are 3.15% and 0.32%, respectively. Furthermore, the production of freshwater increases by 23.72%, 17.88%, and 6.17%, respectively, in the presence of both porous material and phase change material, phase change material alone, and porous material alone, compared to the base case

کلیدواژه‌ها English

Solar Still
Porous Material
Phase change material
Efficiency
energy
Exergy
[1] A. Jafar Gholi Beik, M.R. Assari, H. Basirat Tabrizi, Passive and active performance of a multi-side-stepped square pyramid solar still; experimental and modeling, J. Energy Storage 32 (2020) 101832. https://doi.org/10.1016/J.EST.2020.101832.
[2] A. Sangeetha, S. Shanmugan, A.J. Alrubaie, M.M. Jaber, H. Panchal, M.E.H. Attia, A.H. Elsheikh, D. Mevada, F.A. Essa, A review on PCM and nanofluid for various productivity enhancement methods for double slope solar still: Future challenge and current water issues, Desalination 551 (2023) 116367. https://doi.org/10.1016/J.DESAL.2022.116367.
[3] A. Kasaeian, N.S. Nazari, A. Masoumi, S.T. Shabestari, M. Jadidi, L. Fereidooni, M.E. Bidhendi, A review on phase change materials in different types of solar stills, J. Energy Storage 99 (2024) 113430. https://doi.org/10.1016/J.EST.2024.113430.
[4] D. Sivasankar, S. Subramani, D.K. Murugan, Performance enhancement of single basin solar still using a composite vertical wick configuration, Desalin. Water Treat. 282 (2023) 80–85. https://doi.org/10.5004/dwt.2023.29202.
[5] Y. Khan, Z. Said, R. Raman, P. Singh, M. Mehdi Rashidi, H. Caliskan, A. Garg, Improving single-slope passive solar still efficiency through integration of phase change materials and Al2O3 nanoparticles, J. Therm. Anal. Calorim. 149 (2024) 11807–11816. https://doi.org/10.1007/s10973-024-13558-x.
[6] S. Gupta, S.C. Solanki, Enhancing the performance of double-slope solar still using nano-enhanced eutectic phase change materials and steel wool fibre as wick material, J. Brazilian Soc. Mech. Sci. Eng. 46 (2024) 274. https://doi.org/10.1007/s40430-024-04853-7.
[7] M.I. Elamy, S.A. Mohammed, A. Basem, W.H. Alawee, A.S. Abdullah, A. Aldabesh, H.S. Majdi, Z.M. Omara, F.A. Essa, Enhancing coiled solar still performance with vertical wick distiller, reflectors, nanomaterial-infused PCM, and condenser integration, Case Stud. Therm. Eng. 61 (2024) 104912. https://doi.org/10.1016/J.CSITE.2024.104912.
[8] M.I. Elamy, S.A. Mohammed, A. Basem, W.H. Alawee, A. Aldabesh, A.S. Abdullah, H.S. Majdi, Z.M. Omara, F.A. Essa, Augmenting thermal performance in tubular solar stills: A multifaceted strategy with wick cords, integrated baffles, reflectors, and nano-PCM, Results Eng. 23 (2024) 102771. https://doi.org/10.1016/J.RINENG.2024.102771.
[9] P. Sharma, S.K. Birla, Simulation and experimental analysis of PCM-enhanced solar stills using CMS, J. Energy Storage 103 (2024) 114318. https://doi.org/10.1016/J.EST.2024.114318.
[10] M.M. Younes, Z.M. Omara, M.I. Amro, G. Hamisa, Employing a vertical wick, reflector, and Nano phase change material to improve the thermo-economic performance of a tubular solar still, J. Energy Storage 74 (2023) 109362. https://doi.org/10.1016/j.est.2023.109362.
[11] L.O. Afolabi, C.C. Enweremadu, M.W. Kareem, A.I. Arogundade, K. Irshad, S. Islam, K.O. Oladosu, A.M. Elfaghi, D.H. Didane, Experimental investigation of double slope solar still integrated with PCM nanoadditives microencapsulated thermal energy storage, Desalination 553 (2023) 116477. https://doi.org/10.1016/J.DESAL.2023.116477.
[12] U.A. Anika, M.G. Kibria, S.D. Kanka, M.S. Mohtasim, U.K. Paul, B.K. Das, Exergy, exergo-economic, environmental and sustainability analysis of pyramid solar still integrated hybrid nano-PCM, black sand, and sponge, Sol. Energy 274 (2024) 112559. https://doi.org/10.1016/J.SOLENER.2024.112559.
[13] M.I. Shajahan, D.R. Narayana, N.S. Radha Krishnan, J.J. Michael, Evaluation of efficiency of double slope solar still and drinking water yield using silver nanoparticle mixed with phase change material, Energy Sources, Part A Recover. Util. Environ. Eff. 44 (2022) 8679–8693. https://doi.org/10.1080/15567036.2022.2120572.
[14] F. Hussain, S. Shaik, S.A. Khan, V. Van Huynh, R.D. Jilte, V. Sundara, M. Asif, E. Linul, Transient solidification and melting numerical simulation of lauric acid PCM filled stepped solar still basin used in water desalination process, Case Stud. Therm. Eng. 49 (2023) 103370. https://doi.org/10.1016/J.CSITE.2023.103370.
[15] M. Bady, M. El Hadi Attia, A. Elnaby Kabeel, M.A. Elazab, Enhancing conical solar still performance using high conductive hollow cylindrical copper fins embedded by PCM, Sol. Energy 282 (2024) 112990. https://doi.org/10.1016/j.solener.2024.112990.
[16] G. Murali, K. Mayilsamy, T. V. Arjunan, An Experimental Study of PCM-Incorporated Thermosyphon Solar Water Heating System, Int. J. Green Energy 12 (2015) 978–986. https://doi.org/10.1080/15435075.2014.888663.
[17] K.K. Matrawy, A.S. Alosaimy, A.F. Mahrous, Modeling and experimental study of a corrugated wick type solar still: Comparative study with a simple basin type, Energy Convers. Manag. 105 (2015) 1261–1268. https://doi.org/10.1016/J.ENCONMAN.2015.09.006.
[18] M. Jobrane, A. Kopmeier, A. Kahn, H.M. Cauchie, A. Kharroubi, C. Penny, Theoretical and experimental investigation on a novel design of wick type solar still for sustainable freshwater production, Appl. Therm. Eng. 200 (2022) 117648. https://doi.org/10.1016/J.APPLTHERMALENG.2021.117648.
[19] A.A. El-Sebaii, A.A. Al-Ghamdi, F.S. Al-Hazmi, A.S. Faidah, Thermal performance of a single basin solar still with PCM as a storage medium, Appl. Energy 86 (2009) 1187–1195. https://doi.org/10.1016/j.apenergy.2008.10.014.
[20] A. Agrawal, R.S. Rana, P.K. Srivastava, Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: Experimental and theoretical comparison, Resour. Technol. 3 (2017) 466–482. https://doi.org/10.1016/J.REFFIT.2017.05.003.
[21] M.K. Gaur, G.N. Tiwari, Optimization of number of collectors for integrated PV/T hybrid active solar still, Appl. Energy 87 (2010) 1763–1772. https://doi.org/10.1016/J.APENERGY.2009.10.019.
[22] M. Setareh, M.R. Assari, H. Basirat Tabrizi, M. Alizadeh, Performance of a stepped solar still using porous materials experimentally, Environ. Dev. Sustain. 26 (2023) 28519–28538. https://doi.org/10.1007/S10668-023-03822-9/METRICS.
[23] A. Nakade, A. Aglawe, K. More, V.P. Kalbande, Experimental analysis of two stage solar still integrated with thermal storage based solar collector using nano-enhanced phase change materials, Desalin. Water Treat. 320 (2024) 100755. https://doi.org/10.1016/J.DWT.2024.100755.
[24] م. ستاره, م. عصاری, ح. بصیرت تبریزی, ع. سلیمانی عویضی, بررسی تجربی و آنالیز انرژی و اگزرژی آب شیرین کن صفحه تخت در شیب‌های مختلف با استفاده از مواد متخلخل و روغن جاذب حرارت, مهندسی مکانیک دانشگاه تبریز 53 (2023) 141–145. https://doi.org/10.22034/jmeut.2023.54594.3217.