1. Leong KY, Abdul Rahman MR, Gurunathan BA. Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges. J Energy Storage. 2019 Feb;21:18–31.
2. Said Z, Pandey AK, Tiwari AK, Kalidasan B, Jamil F, Thakur AK, et al. Nano-enhanced phase change materials: Fundamentals and applications. Prog Energy Combust Sci. 2024 Sep;104:101162.
3. Jagadeeswara Reddy V, Fairusham Ghazali M, Kumarasamy S. Innovations in phase change materials for diverse industrial applications: A comprehensive review. Results Chem. 2024 Jun;8:101552.
4. Lin X, Qiu C, Wang K, Zhang Y, Wan C, Fan M, et al. Biomimetic bone tissue structure: An ultrastrong thermal energy storage wood. Chemical Engineering Journal. 2023 Feb;457:141351.
5. Karaağaç MO. Performance evaluation of nano-enhanced phase change materials for thermal energy storage: An experimental study. Case Studies in Thermal Engineering. 2024 Dec;64:105412.
6. Tan S, Zhang X. Progress of research on phase change energy storage materials in their thermal conductivity. J Energy Storage. 2023 May;61:106772.
7. Gür M, Gürgenç E, Coşanay H, Öztop HF. Solar-assisted radiant heating system with nano-B4C enhanced PCM for nearly zero energy buildings. Case Studies in Thermal Engineering. 2025 Jan;65:105544.
8. Rashid FL, Dhaidan NS, Mahdi AJ, Azziz HN, Parveen R, Togun H, et al. Heat transfer enhancement of phase change materials using letters-shaped fins: A review. International Communications in Heat and Mass Transfer. 2024 Dec;159:108096.
9. Bhagat K, Saha SK. Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant. Renew Energy. 2016 Sep;95:323–36.
10. Dhaidan N, Hashim H, Abbas A, Khodadadi J, Almosawy W, Al-Mousawi F. Discharging of PCM in Various Shapes of Thermal Energy Storage Systems: A Review. Journal of Thermal Science. 2023 May 13;32(3):1124–54.
11. Shoeibi S, Kargarsharifabad H, Rahbar N. Effects of nano-enhanced phase change material and nano-coated on the performance of solar stills. J Energy Storage. 2021 Oct;42:103061.
12. Dhaou MH, Mellouli S, Alresheedi F, El-Ghoul Y. Experimental assessment of a solar water tank integrated with nano-enhanced PCM and a stirrer. Alexandria Engineering Journal. 2022 Oct;61(10):8113–22.
13. Taheri M, Pourfayaz F, Hemmati S. A highly accurate model for prediction of thermal conductivity of carbon-based nano-enhanced PCMs using an artificial neural network. Energy Reports. 2023 Nov;10:1249–58.
14. Cui Y, Liu C, Hu S, Yu X. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Solar Energy Materials and Solar Cells. 2011 Apr;95(4):1208–12.
15. Wang Y, Tang B, Zhang S. Single‐Walled Carbon Nanotube/Phase Change Material Composites: Sunlight‐Driven, Reversible, Form‐Stable Phase Transitions for Solar Thermal Energy Storage. Adv Funct Mater. 2013 Sep 20;23(35):4354–60.
16. Ye F, Ge Z, Ding Y, Yang J. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage. Particuology. 2014 Aug;15:56–60.
17. Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon N Y. 2005 Dec;43(15):3067–74.
18. Wang J, Xie H, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta. 2009 May;488(1–2):39–42.
19. Wang J, Xie H, Xin Z, Li Y, Chen L. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Solar Energy. 2010 Feb;84(2):339–44.
20. Zeng JL, Liu YY, Cao ZX, Zhang J, Zhang ZH, Sun LX, et al. Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim. 2008 Feb 13;91(2):443–6.
21. Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, et al. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim. 2009 Feb 12;95(2):507–12.
22. Li MJ, Shi YQ, Lan TY, Yang HH, Chen GN. Solid-state electrochemiluminescence of two iridium(III) complexes. Journal of Electroanalytical Chemistry. 2013 Aug;702:25–30.
23. He M, Yang L, Lin W, Chen J, Mao X, Ma Z. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J Energy Storage. 2019 Oct;25:100874.
24. Wang J, Xie H, Xin Z, Li Y. Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon N Y. 2010 Nov;48(14):3979–86.
25. Fang X, Fan LW, Ding Q, Wang X, Yao XL, Hou JF, et al. Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets. Energy & Fuels. 2013 Jul 18;27(7):4041–7.
26. Fang X, Fan LW, Ding Q, Wang X, Yao XL, Hou JF, et al. Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets. Energy & Fuels. 2013 Jul 18;27(7):4041–7.
27. Meng X, Zhang H, Sun L, Xu F, Jiao Q, Zhao Z, et al. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials. J Therm Anal Calorim. 2013 Jan 20;111(1):377–84.
28. Ye F, Ge Z, Ding Y, Yang J. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage. Particuology. 2014 Aug;15:56–60.
29. Wang Y, Tang B, Zhang S. Single‐Walled Carbon Nanotube/Phase Change Material Composites: Sunlight‐Driven, Reversible, Form‐Stable Phase Transitions for Solar Thermal Energy Storage. Adv Funct Mater. 2013 Sep 20;23(35):4354–60.
30. Cui Y, Liu C, Hu S, Yu X. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Solar Energy Materials and Solar Cells. 2011 Apr;95(4):1208–12.
31. Qian T, Li J, Feng W, Nian H. Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material. Energy Convers Manag. 2017 Jul;143:96–108.
32. Motahar S, Alemrajabi AA, Khodabandeh R. Enhanced thermal conductivity of n-octadecane containing carbon-based nanomaterials. Heat and Mass Transfer. 2016 Aug 24;52(8):1621–31.
33. Qu Y, Wang S, Zhou D, Tian Y. Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives. Renew Energy. 2020 Feb;146:2637–45.
34. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci. 2011 Jul;36(7):914–44.
35. Amin M, Putra N, Kosasih EA, Prawiro E, Luanto RA, Mahlia TMI. Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl Therm Eng. 2017 Feb;112:273–80.
36. Xiang J, Drzal LT. Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon N Y. 2011 Mar;49(3):773–8.
37. Wang J, Xie H, Xin Z. Thermal properties of heat storage composites containing multiwalled carbon nanotubes. J Appl Phys. 2008 Dec 1;104(11).
38. Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy. 2013 Oct;110:163–72.
39. GÜRBÜZ H, AYTAÇ HE, HAMAMCIOĞLU E, AKÇAY H. The Effect of Al_2 O_3 Addition on Solidification Process of Phase Change Material: A Case Study on Heating of Automobile Cabin in Cold Climate Conditions. International Journal of Automotive Science and Technology. 2022 Oct 3;6(3):275–83.
40. Jia M, Yu K, Liu Y, Yang Y. Enabling superior thermo-mechanical performance of hydrated salt-based phase change energy storage cementitious composite using graphene oxide reinforced micro-interface. Journal of Building Engineering. 2023 Oct;76:107166.