مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی عددی یک سیستم مبتنی بر مواد تغییر فاز دهنده برای ذخیره انرژی در ساختمان با درنظر گرفتن ویژگی‌های هندسی فین‌های ادغام شده

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه علم و صنعت ایران
چکیده
مواد تغییر فازدهنده (PCM) به دلیل توانایی در ذخیره و آزادسازی حرارت، کاربرد گسترده‌ای در افزایش بهره‌وری انرژی ساختمان‌ها و سیستم‌های حرارتی دارند. در این پژوهش، اثر افزودن فین‌های افقی و زاویه‌دار به مخازن حاوی PCM بر فرآیند ذوب و عملکرد حرارتی سیستم به‌صورت عددی مورد بررسی قرار گرفت. نتایج حاصل از شبیه‌سازی نشان داد که اضافه کردن فین‌ها با افزایش سطح تماس و تقویت جریان همرفتی، موجب تسریع ذوب و افزایش دمای متوسط مخزن می‌شود. میانگین کسر حجمی مایع پس از 600 ثانیه، در حالت‌های بدون فین، فین افقی، فین با زاویه 30+ و فین با زاویه 30- به ترتیب برابر با 27/0، 42/0، 40/0 و 39/0 بود. همچنین، دمای میانگین مخزن در این حالت‌ها به ترتیب به 58/0، 94/0، 92/0 و 93/0 (به صورت نرمال‌شده) رسید.

در میان پیکربندی‌های مختلف، فین‌های افقی به دلیل ایجاد توزیع یکنواخت حرارتی، مناسب‌ترین گزینه برای دستیابی به ذوب کامل و پایدار هستند. فین‌های زاویه‌دار نیز بسته به جهت‌گیری، می‌توانند تمرکز انتقال حرارت را به نواحی بالایی (زاویه 30+ درجه) یا پایینی (زاویه 30- درجه) مخزن تسهیل کنند. این یافته‌ها بیانگر اهمیت طراحی هدفمند فین‌ها متناسب با نیازهای کاربردی و شرایط عملیاتی در بهینه‌سازی عملکرد سامانه‌های ذخیره انرژی حرارتی است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical Study of a System Based on Phase Change Materials for Energy Storage in Buildings Considering the Geometric Characteristics of Integrated Fins

نویسندگان English

Ali Moshiri
Mohammad Javad Raji Asadabadi
mahdi moghimi
School of mechanical engineering, Iran university of science and technology
چکیده English

Phase change materials (PCMs), due to their ability to store and release thermal energy, are widely used to enhance the energy efficiency of buildings and thermal systems. In this study, the effect of adding horizontal and angled fins to PCM-containing enclosures on the melting process and thermal performance was investigated numerically. The simulation results showed that the addition of fins, by increasing the contact surface and enhancing natural convection, accelerates the melting process and increases the average temperature of the enclosure. After 600 seconds, the average liquid fraction in the cases of no fin, horizontal fin, 30° positive-angle fin, and 30° negative-angle fin was 0.27, 0.42, 0.40, and 0.39, respectively. Similarly, the normalized average temperature of the PCM enclosure in these configurations reached 0.58, 0.94, 0.92, and 0.93, respectively. Among the different configurations, horizontal fins provided the most uniform heat distribution and were identified as the most suitable option for achieving complete and stable melting. Angled fins, depending on their orientation, can direct heat transfer toward specific zones: upward for 30° positive fins and downward for 30° negative fins. These findings highlight the importance of purposeful fin design tailored to practical needs and operational conditions for optimizing the performance of thermal energy storage systems

کلیدواژه‌ها English

Numerical investigation
Phase Change Materials
energy storage
heat transfer improvement
integrated fin
[1] A. Sharma, V. V Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, vol. 13, no. 2, pp. 318–345, 2009, doi: https://doi.org/10.1016/j.rser.2007.10.005.
[2] M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, “A review on phase change energy storage: materials and applications,” Energy Convers Manag, vol. 45, no. 9, pp. 1597–1615, 2004, doi: https://doi.org/10.1016/j.enconman.2003.09.015.
[3] M. N. A. Hawlader, M. S. Uddin, and M. M. Khin, “Microencapsulated PCM thermal-energy storage system,” Appl Energy, vol. 74, no. 1, pp. 195–202, 2003, doi: https://doi.org/10.1016/S0306-2619(02)00146-0.
[4] A. El Majd et al., “Advancing PCM research in building efficiency: A comprehensive investigation into PCM selection and critical integration strategies,” Journal of Building Engineering, vol. 96, p. 110485, 2024, doi: https://doi.org/10.1016/j.jobe.2024.110485.
[5] T.-C. Ling and C.-S. Poon, “Use of phase change materials for thermal energy storage in concrete: An overview,” Constr Build Mater, vol. 46, pp. 55–62, 2013, doi: https://doi.org/10.1016/j.conbuildmat.2013.04.031.
[6] B. Zalba, J. M. Marı́n, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications,” Appl Therm Eng, vol. 23, no. 3, pp. 251–283, 2003, doi: https://doi.org/10.1016/S1359-4311(02)00192-8.
[7] M. A. Izquierdo-Barrientos, J. F. Belmonte, D. Rodríguez-Sánchez, A. E. Molina, and J. A. Almendros-Ibáñez, “A numerical study of external building walls containing phase change materials (PCM),” Appl Therm Eng, vol. 47, pp. 73–85, 2012, doi: https://doi.org/10.1016/j.applthermaleng.2012.02.038.
[8] M. Alam, H. Jamil, J. Sanjayan, and J. Wilson, “Energy saving potential of phase change materials in major Australian cities,” Energy Build, vol. 78, pp. 192–201, 2014, doi: https://doi.org/10.1016/j.enbuild.2014.04.027.
[9] D. Zhou, C. Y. Zhao, and Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Appl Energy, vol. 92, pp. 593–605, 2012, doi: https://doi.org/10.1016/j.apenergy.2011.08.025.
[10] A. Refahi, A. Rostami, and M. Amani, “Implementation of a double layer of PCM integrated into the building exterior walls for reducing annual energy consumption: Effect of PCM wallboards position,” J Energy Storage, vol. 82, p. 110556, 2024, doi: https://doi.org/10.1016/j.est.2024.110556.
[11] L. F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, and A. I. Fernández, “Materials used as PCM in thermal energy storage in buildings: A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 3, pp. 1675–1695, 2011, doi: https://doi.org/10.1016/j.rser.2010.11.018.
[12] A. A. Ali, D. A. Lafta, S. W. Noori, F. Abdulamir, and F. L. Rashid, “Innovative materials integrated with PCM for enhancing photovoltaic panel efficiency: An experimental investigation,” J Energy Storage, vol. 102, p. 114258, 2024, doi: https://doi.org/10.1016/j.est.2024.114258.
[13] L. F. Cabeza, I. Martorell, L. Miró, A. I. Fernández, and C. Barreneche, “1 - Introduction to thermal energy storage (TES) systems,” in Advances in Thermal Energy Storage Systems, L. F. Cabeza, Ed., Woodhead Publishing, 2015, pp. 1–28. doi: https://doi.org/10.1533/9781782420965.1.
[14] B. en Zalba, J. M. Mar ı ın, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications.” [Online]. Available: www.elsevier.com/locate/apthermeng
[15] A. Hasan, S. J. McCormack, M. J. Huang, and B. Norton, “Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics,” Solar Energy, vol. 84, no. 9, pp. 1601–1612, 2010, doi: https://doi.org/10.1016/j.solener.2010.06.010.
[16] A. El Khadraoui, S. Bouadila, S. Kooli, A. Farhat, and A. Guizani, “Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM,” J Clean Prod, vol. 148, pp. 37–48, 2017, doi: https://doi.org/10.1016/j.jclepro.2017.01.149.
[17] F. Agyenim, P. Eames, and M. Smyth, “A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins,” Solar Energy, vol. 83, no. 9, pp. 1509–1520, 2009, doi: https://doi.org/10.1016/j.solener.2009.04.007.
[18] J. Jaguemont, N. Omar, P. Van den Bossche, and J. Mierlo, “Phase-change materials (PCM) for automotive applications: A review,” Appl Therm Eng, vol. 132, pp. 308–320, 2018, doi: https://doi.org/10.1016/j.applthermaleng.2017.12.097.
[19] E. Zavrl, U. Tomc, M. El Mankibi, M. Dovjak, and U. Stritih, “Parametric study of an active-passive system for cooling application in buildings improved with free cooling for enhanced solidification,” Sustain Cities Soc, vol. 99, Dec. 2023, doi: 10.1016/j.scs.2023.104960.
[20] M. Mehrpooya, S. R. Mirmotahari, F. Ghafoorian, M. Karimkhani, and M. R. Ganjali, “Investigation of a packed bed energy storage system with different PCM configurations and heat transfer enhancement with fins using CFD modeling,” Chemical Papers, vol. 78, no. 4, pp. 2453–2467, Feb. 2024, doi: 10.1007/s11696-023-03251-y.
[21] M. Barthwal, A. Dhar, and S. Powar, “Effect of Nanomaterial Inclusion in Phase Change Materials for Improving the Thermal Performance of Heat Storage: A Review,” ACS Appl Energy Mater, vol. 4, no. 8, pp. 7462–7480, Aug. 2021, doi: 10.1021/acsaem.1c01268.
[22] P. Wang, Z. Liu, R. Liu, F. Zhang, and L. Zhang, “Energy flexibility of PCM-integrated building: Combination parameters design and operation control in multi-objective optimization considering different stakeholders,” Energy, vol. 268, p. 126753, 2023, doi: https://doi.org/10.1016/j.energy.2023.126753.
[23] I. Pundienė, J. Pranckevičienė, G. Bumanis, M. Šinka, and D. Bajare, “Experimental investigation of novel bio-composite with integrated phase change materials (PCM) for enhanced energy saving in buildings,” Ind Crops Prod, vol. 224, p. 120318, 2025, doi: https://doi.org/10.1016/j.indcrop.2024.120318.
[24] M. Lachheb, Z. Younsi, N. Youssef, and S. Bouadila, “Enhancing building energy efficiency and thermal performance with PCM-Integrated brick walls: A comprehensive review,” Build Environ, vol. 256, p. 111476, 2024, doi: https://doi.org/10.1016/j.buildenv.2024.111476.
[25] K. Jiao, L. Lu, L. Zhao, and G. Wang, “Towards Passive Building Thermal Regulation: A State-of-the-Art Review on Recent Progress of PCM-Integrated Building Envelopes,” Sustainability, vol. 16, no. 15, p. 6482, 2024.
[26] M. Alvarez-Rodriguez, M. Alonso-Martinez, I. Suarez-Ramon, and P. José García-Nieto, “Numerical model for determining the effective heat capacity of macroencapsulated PCM for building applications,” Appl Therm Eng, vol. 242, p. 122478, 2024, doi: https://doi.org/10.1016/j.applthermaleng.2024.122478.
[27] T. Pirasaci and A. Sunol, “Potential of phase change materials (PCM) for building thermal performance enhancement: PCM-composite aggregate application throughout Turkey,” Energy, vol. 292, p. 130589, 2024, doi: https://doi.org/10.1016/j.energy.2024.130589.
[28] W. Li, M. Rahim, D. Wu, M. El Ganaoui, and R. Bennacer, “Dynamic integration of phase change material in walls for enhancing building thermal performance—A novel self-adaptive method for moving PCM layer,” Energy Convers Manag, vol. 308, p. 118401, 2024.
[29] A. Refahi, A. Rostami, and M. Amani, “Implementation of a double layer of PCM integrated into the building exterior walls for reducing annual energy consumption: Effect of PCM wallboards position,” J Energy Storage, vol. 82, p. 110556, 2024.
[30] W. Li, M. Rahim, D. Wu, M. El Ganaoui, and R. Bennacer, “Experimental study of dynamic PCM integration in building walls for enhanced thermal performance in summer conditions,” Renew Energy, vol. 237, p. 121891, 2024, doi: https://doi.org/10.1016/j.renene.2024.121891.
[31] A. Pasupathy, R. Velraj, and R. V Seeniraj, “Phase change material-based building architecture for thermal management in residential and commercial establishments,” Renewable and Sustainable Energy Reviews, vol. 12, no. 1, pp. 39–64, 2008, doi: https://doi.org/10.1016/j.rser.2006.05.010.
[32] “The Scientific and Technical Centre for Building.” Accessed: Jan. 05, 2025. [Online]. Available: https://www.cstb.fr/
[33] T. Bouhal et al., “Technical assessment, economic viability and investment risk analysis of solar heating/cooling systems in residential buildings in Morocco,” Solar Energy, vol. 170, pp. 1043–1062, 2018, doi: https://doi.org/10.1016/j.solener.2018.06.032.
[34] T. Bouhal et al., “Parametric CFD analysis and impact of PCM intrinsic parameters on melting process inside enclosure integrating fins: Solar building applications,” Journal of Building Engineering, vol. 20, pp. 634–646, Nov. 2018, doi: 10.1016/j.jobe.2018.09.016.
[35] A. Bejan, G. Tsatsaronis, and M. J. Moran, Thermal design and optimization. John Wiley & Sons, 1995.