[1] A. Sharma, V. V Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, vol. 13, no. 2, pp. 318–345, 2009, doi: https://doi.org/10.1016/j.rser.2007.10.005.
[2] M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, “A review on phase change energy storage: materials and applications,” Energy Convers Manag, vol. 45, no. 9, pp. 1597–1615, 2004, doi: https://doi.org/10.1016/j.enconman.2003.09.015.
[3] M. N. A. Hawlader, M. S. Uddin, and M. M. Khin, “Microencapsulated PCM thermal-energy storage system,” Appl Energy, vol. 74, no. 1, pp. 195–202, 2003, doi: https://doi.org/10.1016/S0306-2619(02)00146-0.
[4] A. El Majd et al., “Advancing PCM research in building efficiency: A comprehensive investigation into PCM selection and critical integration strategies,” Journal of Building Engineering, vol. 96, p. 110485, 2024, doi: https://doi.org/10.1016/j.jobe.2024.110485.
[5] T.-C. Ling and C.-S. Poon, “Use of phase change materials for thermal energy storage in concrete: An overview,” Constr Build Mater, vol. 46, pp. 55–62, 2013, doi: https://doi.org/10.1016/j.conbuildmat.2013.04.031.
[6] B. Zalba, J. M. Marı́n, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications,” Appl Therm Eng, vol. 23, no. 3, pp. 251–283, 2003, doi: https://doi.org/10.1016/S1359-4311(02)00192-8.
[7] M. A. Izquierdo-Barrientos, J. F. Belmonte, D. Rodríguez-Sánchez, A. E. Molina, and J. A. Almendros-Ibáñez, “A numerical study of external building walls containing phase change materials (PCM),” Appl Therm Eng, vol. 47, pp. 73–85, 2012, doi: https://doi.org/10.1016/j.applthermaleng.2012.02.038.
[8] M. Alam, H. Jamil, J. Sanjayan, and J. Wilson, “Energy saving potential of phase change materials in major Australian cities,” Energy Build, vol. 78, pp. 192–201, 2014, doi: https://doi.org/10.1016/j.enbuild.2014.04.027.
[9] D. Zhou, C. Y. Zhao, and Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Appl Energy, vol. 92, pp. 593–605, 2012, doi: https://doi.org/10.1016/j.apenergy.2011.08.025.
[10] A. Refahi, A. Rostami, and M. Amani, “Implementation of a double layer of PCM integrated into the building exterior walls for reducing annual energy consumption: Effect of PCM wallboards position,” J Energy Storage, vol. 82, p. 110556, 2024, doi: https://doi.org/10.1016/j.est.2024.110556.
[11] L. F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, and A. I. Fernández, “Materials used as PCM in thermal energy storage in buildings: A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 3, pp. 1675–1695, 2011, doi: https://doi.org/10.1016/j.rser.2010.11.018.
[12] A. A. Ali, D. A. Lafta, S. W. Noori, F. Abdulamir, and F. L. Rashid, “Innovative materials integrated with PCM for enhancing photovoltaic panel efficiency: An experimental investigation,” J Energy Storage, vol. 102, p. 114258, 2024, doi: https://doi.org/10.1016/j.est.2024.114258.
[13] L. F. Cabeza, I. Martorell, L. Miró, A. I. Fernández, and C. Barreneche, “1 - Introduction to thermal energy storage (TES) systems,” in Advances in Thermal Energy Storage Systems, L. F. Cabeza, Ed., Woodhead Publishing, 2015, pp. 1–28. doi: https://doi.org/10.1533/9781782420965.1.
[14] B. en Zalba, J. M. Mar ı ın, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications.” [Online]. Available: www.elsevier.com/locate/apthermeng
[15] A. Hasan, S. J. McCormack, M. J. Huang, and B. Norton, “Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics,” Solar Energy, vol. 84, no. 9, pp. 1601–1612, 2010, doi: https://doi.org/10.1016/j.solener.2010.06.010.
[16] A. El Khadraoui, S. Bouadila, S. Kooli, A. Farhat, and A. Guizani, “Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM,” J Clean Prod, vol. 148, pp. 37–48, 2017, doi: https://doi.org/10.1016/j.jclepro.2017.01.149.
[17] F. Agyenim, P. Eames, and M. Smyth, “A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins,” Solar Energy, vol. 83, no. 9, pp. 1509–1520, 2009, doi: https://doi.org/10.1016/j.solener.2009.04.007.
[18] J. Jaguemont, N. Omar, P. Van den Bossche, and J. Mierlo, “Phase-change materials (PCM) for automotive applications: A review,” Appl Therm Eng, vol. 132, pp. 308–320, 2018, doi: https://doi.org/10.1016/j.applthermaleng.2017.12.097.
[19] E. Zavrl, U. Tomc, M. El Mankibi, M. Dovjak, and U. Stritih, “Parametric study of an active-passive system for cooling application in buildings improved with free cooling for enhanced solidification,” Sustain Cities Soc, vol. 99, Dec. 2023, doi: 10.1016/j.scs.2023.104960.
[20] M. Mehrpooya, S. R. Mirmotahari, F. Ghafoorian, M. Karimkhani, and M. R. Ganjali, “Investigation of a packed bed energy storage system with different PCM configurations and heat transfer enhancement with fins using CFD modeling,” Chemical Papers, vol. 78, no. 4, pp. 2453–2467, Feb. 2024, doi: 10.1007/s11696-023-03251-y.
[21] M. Barthwal, A. Dhar, and S. Powar, “Effect of Nanomaterial Inclusion in Phase Change Materials for Improving the Thermal Performance of Heat Storage: A Review,” ACS Appl Energy Mater, vol. 4, no. 8, pp. 7462–7480, Aug. 2021, doi: 10.1021/acsaem.1c01268.
[22] P. Wang, Z. Liu, R. Liu, F. Zhang, and L. Zhang, “Energy flexibility of PCM-integrated building: Combination parameters design and operation control in multi-objective optimization considering different stakeholders,” Energy, vol. 268, p. 126753, 2023, doi: https://doi.org/10.1016/j.energy.2023.126753.
[23] I. Pundienė, J. Pranckevičienė, G. Bumanis, M. Šinka, and D. Bajare, “Experimental investigation of novel bio-composite with integrated phase change materials (PCM) for enhanced energy saving in buildings,” Ind Crops Prod, vol. 224, p. 120318, 2025, doi: https://doi.org/10.1016/j.indcrop.2024.120318.
[24] M. Lachheb, Z. Younsi, N. Youssef, and S. Bouadila, “Enhancing building energy efficiency and thermal performance with PCM-Integrated brick walls: A comprehensive review,” Build Environ, vol. 256, p. 111476, 2024, doi: https://doi.org/10.1016/j.buildenv.2024.111476.
[25] K. Jiao, L. Lu, L. Zhao, and G. Wang, “Towards Passive Building Thermal Regulation: A State-of-the-Art Review on Recent Progress of PCM-Integrated Building Envelopes,” Sustainability, vol. 16, no. 15, p. 6482, 2024.
[26] M. Alvarez-Rodriguez, M. Alonso-Martinez, I. Suarez-Ramon, and P. José García-Nieto, “Numerical model for determining the effective heat capacity of macroencapsulated PCM for building applications,” Appl Therm Eng, vol. 242, p. 122478, 2024, doi: https://doi.org/10.1016/j.applthermaleng.2024.122478.
[27] T. Pirasaci and A. Sunol, “Potential of phase change materials (PCM) for building thermal performance enhancement: PCM-composite aggregate application throughout Turkey,” Energy, vol. 292, p. 130589, 2024, doi: https://doi.org/10.1016/j.energy.2024.130589.
[28] W. Li, M. Rahim, D. Wu, M. El Ganaoui, and R. Bennacer, “Dynamic integration of phase change material in walls for enhancing building thermal performance—A novel self-adaptive method for moving PCM layer,” Energy Convers Manag, vol. 308, p. 118401, 2024.
[29] A. Refahi, A. Rostami, and M. Amani, “Implementation of a double layer of PCM integrated into the building exterior walls for reducing annual energy consumption: Effect of PCM wallboards position,” J Energy Storage, vol. 82, p. 110556, 2024.
[30] W. Li, M. Rahim, D. Wu, M. El Ganaoui, and R. Bennacer, “Experimental study of dynamic PCM integration in building walls for enhanced thermal performance in summer conditions,” Renew Energy, vol. 237, p. 121891, 2024, doi: https://doi.org/10.1016/j.renene.2024.121891.
[31] A. Pasupathy, R. Velraj, and R. V Seeniraj, “Phase change material-based building architecture for thermal management in residential and commercial establishments,” Renewable and Sustainable Energy Reviews, vol. 12, no. 1, pp. 39–64, 2008, doi: https://doi.org/10.1016/j.rser.2006.05.010.
[32] “The Scientific and Technical Centre for Building.” Accessed: Jan. 05, 2025. [Online]. Available: https://www.cstb.fr/
[33] T. Bouhal et al., “Technical assessment, economic viability and investment risk analysis of solar heating/cooling systems in residential buildings in Morocco,” Solar Energy, vol. 170, pp. 1043–1062, 2018, doi: https://doi.org/10.1016/j.solener.2018.06.032.
[34] T. Bouhal et al., “Parametric CFD analysis and impact of PCM intrinsic parameters on melting process inside enclosure integrating fins: Solar building applications,” Journal of Building Engineering, vol. 20, pp. 634–646, Nov. 2018, doi: 10.1016/j.jobe.2018.09.016.
[35] A. Bejan, G. Tsatsaronis, and M. J. Moran, Thermal design and optimization. John Wiley & Sons, 1995.