مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مقایسه دریچه بیولوژیکی تثبیت شده با گلوتارآلدهید با دریچه سلول‌زدایی شده با استفاده از تحلیل آزمایشگاهی و عددی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
چکیده
با توجه به استفاده گسترده از پروتز دریچه ­های قلبی آئورت، بررسی این پروتزها از نظر عملکرد زیستی و زیست­ سازگاری از اهمیت ویژه­ای برخوردار است. دریچه­ های مکانیکی از دوام عالی برخوردار هستند. با این حال، به دلیل استفاده طولانی مدت از داروهای ضد انعقاد، احتمال ترومبوآمبولی و خونریزی وجود دارد. از این نظر دریچه­ های بیولوژیکی ارجح هستند. از طرفی دریچه ­های بیولوژیکی با پریکارد گاوی طول عمر کمتری دارند. عملکرد دریچه­ های بیولوژیکی به ساختار کلاژن و رفتار مکانیکی بافت انتخابی بستگی دارد. بنابراین لازم است بافت مناسبی برای ساخت این پروتزها انتخاب شود. هدف این پژوهش، بررسی میزان تطابق تنش­ ها، کرنش­ ها و میزان باز شدن دریچه­ ی بیولوژیکی ساخته شده با بافت پریکارد الاغ تثبیت شده در گلوتارآلدهید با دریچه­ ی بیولوژیکی ساخته شده با بافت پریکارد الاغ سلول­ زدایی شده است. در این پژوهش پس از آماده ­سازی بافت از جهت شیمیایی، ابتدا آزمون­ های تک محوری بر روی بافت ­ها انجام شد. سپس مدل المان محدود با استفاده از خواص مکانیکی استخراج شده برای ارزیابی تخریب بافت دریچه و تنش تحت بار فیزیولوژیکی اعمال شد. تنش در اوج سیستول در دریچه با لت تثبیت شده با گلوتارآلدهید72/1 مگاپاسکال بود که این مقدار برای دریچه سلول­زدایی شده 17/1 مگاپاسکال بود. نتایج حاکی از آن است که تنش در بافت سلول زدایی شده به نسبت در بافت تثبیت شده با گلوتارآلدهید کمتر است. از نتایج این مطالعه می ­توان در طراحی و ساخت دریچه­ های بیولوژیکی قلب استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of Glutaraldehyde-Stabilized Biological Valve with Decellularized Valve using Experimental and Numerical Analysis

نویسندگان English

Radmehr Nooreddiny Shahabadi
Aisa Rassoli
K.N. Toosi University of Technology, Tehran, Iran
چکیده English

Given the widespread use of heart valve prostheses, examining these prostheses in terms of biological function and biocompatibility is of particular importance. Mechanical valves have excellent durability; however, due to long-term use of anticoagulant medications, there is a risk of thromboembolism and bleeding. In this regard, biological valves are preferable. On the other hand, biological valves made from bovine pericardium have a shorter lifespan. The performance of biological valves depends on the collagen structure and mechanical behavior of the selected tissue. Therefore, it is necessary to choose suitable tissue for constructing these prostheses. The purpose of this study is to investigate the compatibility of stresses, strains, and the opening degree of a biological valve made from glutaraldehyde-stabilized donkey pericardial tissue compared to a biological valve made from decellularized donkey pericardial tissue. In this study, after chemical preparation of the tissue, uniaxial tests were performed on the tissues. Then, a finite element model was used with the extracted mechanical properties to evaluate tissue valve degradation and stress under physiological loading. The stress at peak systole in the valve with a glutaraldehyde-stabilized leaflet was 1.72 MPa, which was 1.17 MPa for the decellularized valve. The results indicate that the stress in decellularized tissue is relatively lower than in glutaraldehyde-stabilized tissue. The results of this study can be used in designing and constructing biological heart valves

کلیدواژه‌ها English

Biological Heart Valves
Glutaraldehyde-Stabilized Pericardium
Decellularized Pericardium
Uniaxial tests
Finite element model
1. Chambers J. Prosthetic heart valves. Int J Clin Pract [Internet]. 2014 Oct 1 [cited 2025 Mar 10];68(10):1227–30. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/ijcp.12309
2. Jana S, advances ALB, 2015 undefined. Bioprinting a cardiac valve. ElsevierS Jana, A LermanBiotechnology advances, 2015•Elsevier [Internet]. 2015 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S0734975015300197
3. Bezuidenhout D, Williams D, Biomaterials PZ, 2015 undefined. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. ElsevierD Bezuidenhout, DF Williams, P ZillaBiomaterials, 2015•Elsevier [Internet]. 2014 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S0142961214010114
4. Dvir D, Barbanti M, Tan J, cardiology JWC problems in, 2014 undefined. Transcatheter aortic valve-in-valve implantation for patients with degenerative surgical bioprosthetic valves. Elsevier [Internet]. 2014 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S0146280613001436
5. Maestro M, Turnay J, Olmo N, Biomaterialia PFA, 2006 undefined. Biochemical and mechanical behavior of ostrich pericardium as a new biomaterial. ElsevierMM Maestro, J Turnay, N Olmo, P Fernández, D Suárez, JMG Páez, S Urillo, MA LizarbeActa Biomaterialia, 2006•Elsevier [Internet]. 2006 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S1742706105001601
6. Claramunt R, Páez J, Alvarez L, … JSJ of the, 2011 undefined. Short-term fatigue testing can predict medium-term pericardium behaviour. ElsevierR Claramunt, JMG Páez, L Alvarez, J Spottorno, A Ros, MC CasadoJournal of the Mechanical Behavior of Biomedical Materials, 2011•Elsevier [Internet]. 2011 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S1751616111001573
7. Smuts A, Blaine D, Scheffer C, … HWJ of the, 2011 undefined. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. Elsevier [Internet]. 2011 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S1751616110001323
8. Abbasi M, biomechanics AAJ of, 2015 undefined. Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion. ElsevierM Abbasi, AN AzadaniJournal of biomechanics, 2015•Elsevier [Internet]. 2015 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S0021929015004510
9. Rassoli A, Fatouraee N, Guidoin R. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves. Artif Organs. 2018 Jun 1;42(6):630–9.
10. Rassoli A, Fatouraee N, Guidoin R, Zhang Z. Comparison of tensile properties of xenopericardium from three animal species and finite element analysis for bioprosthetic heart valve tissue. Artif Organs. 2020 Mar 1;44(3):278–87.
11. Rassoli A, Fatouraee N, Guidoin R, … ZZCM and, 2022 undefined. A comparative study of different tissue materials for bioprosthetic aortic valves using experimental assays and finite element analysis. ElsevierA Rassoli, N Fatouraee, R Guidoin, Z Zhang, S RavaghiComputer Methods and Programs in Biomedicine, 2022•Elsevier [Internet]. 2022 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S016926072200195X
12. Mao J, Rassoli A, Tong Y, Rouse EN, Le-Bel G, How D, et al. Donkey pericardium compares favorably with commercial xenopericardia used in the manufacture of transcatheter heart valves. Artif Organs. 2019 Oct 1;43(10):976–87.
13. Rassoli A, Fatouraee N, Zhang Z, Materials RGM of, 2024 undefined. Quantification and comparison of the nonlinear mechanical properties of transcutaneous and human aortic valve leaflets: Experimental and numerical studies. Elsevier [Internet]. 2024 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S0167663623003186
14. Sacks M, Merryman W, biomechanics DSJ of, 2009 undefined. On the biomechanics of heart valve function. ElsevierMS Sacks, WD Merryman, DE SchmidtJournal of biomechanics, 2009•Elsevier [Internet]. 2009 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S0021929009002656
15. Sommer G, Eder M, Kovacs L, Pathak H, biomaterialia LBA, 2013 undefined. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery. ElsevierG Sommer, M Eder, L Kovacs, H Pathak, L Bonitz, C Mueller, P Regitnig, GA HolzapfelActa biomaterialia, 2013•Elsevier [Internet]. 2013 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S174270611300295X
16. Sommer G, Schriefl A, Andrä M, biomaterialia MSA, 2015 undefined. Biomechanical properties and microstructure of human ventricular myocardium. ElsevierG Sommer, AJ Schriefl, M Andrä, M Sacherer, C Viertler, H Wolinski, GA HolzapfelActa biomaterialia, 2015•Elsevier [Internet]. 2015 [cited 2025 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S1742706115300039
17. Veljković D, Mech MKJSerbSocComp, 2010 undefined. Prediction of planar uniaxial and constrained biaxial state of deformation by commonly used anisotropic constitutive models in arterial mechanics. sscm.kg.ac.rsD Veljković, M KojićJ Serb Soc Comp Mech, 2010•sscm.kg.ac.rs [Internet]. 2010 [cited 2025 Mar 10];4(2):54–74. Available from: http://www.sscm.kg.ac.rs/jsscm/downloads/Vol4No2/Prediction_of_planar_uniaxial_and_constrained_biaxial_state_of_deformation.pdf
18. Fung YC, Fronek K, Patitucci P. Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol Heart Circ Physiol. 1979;6(5).
19. Gharaie SH, Morsi Y. A novel design of a polymeric aortic valve. International Journal of Artificial Organs. 2015 Jun 1;38(5):259–70.
20. Auricchio F, Conti M, Ferrara A, Morganti S, Reali A. Patient-specific simulation of a stentless aortic valve implant: The impact of fibres on leaflet performance. Comput Methods Biomech Biomed Engin. 2014 Feb;17(3):277–85.
21. Guidoin R, Bes T, Cianciulli T, … JKJ of L, 2012 undefined. Cuspal dehiscence at a post and along the stent cloth in a bovine pericardium heart valve implanted for seven years. dl.begellhouse.comR Guidoin, TM Bes, TF Cianciulli, J Klein, B Li, R Gauvin, R Guzman, O Rochette-DrouinJournal of Long-Term Effects of Medical Implants, 2012•dl.begellhouse.com [Internet]. 2012 [cited 2025 Mar 10]; Available from: https://www.dl.begellhouse.com/journals/1bef42082d7a0fdf,4bae91265145243a,5a52e345738e1f68.html
22. Mohammadi S, Baillot R, Voisine P, Mathieu P, Dagenais F. Structural deterioration of the Freestyle aortic valve: Mode of presentation and mechanisms. Journal of Thoracic and Cardiovascular Surgery. 2006 Aug;132(2):401–6.
23. Nooten G Van, Ozaki S, … PHTJ of heart, 1999 undefined. Distortion of the stentless porcine valve induces accelerated leaflet fibrosis and calcification in juvenile sheep. europepmc.orgG Van Nooten, S Ozaki, P Herijgers, P Segers, P Verdonck, W FlamengThe Journal of heart valve disease, 1999•europepmc.org [Internet]. 1999 [cited 2025 Mar 10]; Available from: https://europepmc.org/article/med/10096479