مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل محاسباتی پیشرفته در مورد رفتار پلی‌کریستال نیترید بور: رویکرد دینامیک مولکولی و سطح پاسخ

نویسندگان
1 دانشگاه آزاد اسلامی، شاهرود، ایران
2 دانشگاه حکیم سبزواری، سبزوار، ایران
چکیده
در این مقاله، تحلیل رفتار شکست ساختار دو بعدی نیترید بور در دو حالت مونوکریستال و پلی کریستال مورد بررسی قرار گرفت. از شبیه سازی دینامیک مولکولی به عنوان یک روش مقرون به صرفه برای مدلسازی و آزمایش صفحات دو بعدی استفاده شد. عملکرد مکانیکی مونوکریستال نیترید بور به عنوان تابعی از دما در دو راستای آرمچیر و زیگزاگ بررسی شد. همچنین، خواص مکانیکی مدول یانگ، تنش و کرنش شکست برای پلی کریستال نیترید بور در حضور و عدم حضور ترک و در بازه­ی دمایی 100 تا 900 کلوین برای تعداد ناحیه­ی مختلف مورد آزمایش قرار گرفت. نتایج نشان داد که افزایش دما سبب کاهش خواص مکانیکی مونوکریستال نیترید بور می­شود و نتایج در راستای آرمچیر بالاتر از زیگزاگ گزارش شد. تغییرات نرخ کرنش موجب کاهش مدول یانگ شد و افزایش تعداد ناحیه در پلی کریستال نیترید بور کاهش خاصیت مکانیکی تنش شکست را به همراه داشت. همچنین، افزایش طول ترک سبب شد تا مقدار شدت تنش در این ساختار دو بعدی افزایش یابد. در بخش پایانی، مدلسازی به روش سطح پاسخ مرتبه دو دارای کمترین میانگین خطا در دو بخش آزمایش و آموزش بود و به عنوان مدل منتخب برگزیده شد. یافته­ها تغییرات قابل توجهی را در عملکرد مکانیکی بر اساس شرایط دمایی و ترکیب ساختاری نشان داد. پلی کریستال نیترید بور بسته به آرایش ریزساختاری خود، رفتارهای شکست متمایزی را ارایه کرد. علاوه بر این، روش سطح پاسخ به عنوان یک ابزار پیش‌بینی بسیار مؤثر ظاهر شد و قابلیت‌های مدلسازی دقیقی را برای نانوساختارهای نیترید بور ارایه کرد.










کلیدواژه‌ها

موضوعات


عنوان مقاله English

Cutting-Edge Computational Insights into Polycrystalline BN Behavior: A Molecular Dynamics and Response Surface Approach

نویسندگان English

Mostafa Ahmadi Nokhandan 1
Ali Dadrasi 2
faribirz forouhandeh 1
Vali Parvaneh 1
1 Islamic Azad University, Shahrood, Iran
2 Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
چکیده English

This paper analyzes the fracture behavior of two-dimensional boron nitride (BN) structures, examining both monocrystalline and polycrystalline states. Molecular dynamics simulation was employed as a cost-effective method for modeling and testing two-dimensional plates. The mechanical performance of monocrystalline BN was investigated as a function of temperature, in both armchair and zigzag directions. Additionally, the mechanical properties such as Young's modulus, fracture stress, and fracture strain were tested for polycrystalline BN in the presence and absence of cracks, across a temperature range of 100 to 900 K, for various region counts. The results indicate that increasing temperature reduces the mechanical properties of monocrystalline BN, with higher values observed in the armchair direction compared to the zigzag direction. Changes in strain rate led to a decrease in Young's modulus, while an increase in the number of regions in polycrystalline BN results in lower fracture stress. Additionally, greater crack length leads to an increase in stress intensity within this two-dimensional structure. Finally, the quadratic response surface method exhibited the lowest average error in both the test and train phases and was chosen as the selected model. The findings demonstrate significant variations in mechanical performance based on thermal conditions, and structural composition. Notably, polycrystalline BN exhibits distinct fracture behaviors depending on its microstructural arrangement, while monocrystalline BN shows directional mechanical advantages. Furthermore, the quadratic response surface method emerges as a highly effective predictive tool, offering accurate modeling capabilities for BN nanostructures

کلیدواژه‌ها English

Boron nitride
Mechanical properties
Nanostructure
molecular dynamics
polycrystal
Modeling
1- Novoselov KS, Geim AK, Morozov SV, jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric Field Effect in Atomically Thin Carbon Films. REPORTS. 2004 Sep;306:666-669.
2- Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters. 2008 Jan;8:902-907.
3- Lee C, Wei X, Kysar JW, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008 Jul;321:385-388.
4- Willimas JR, DiCarlo L, Marcus CM. Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene. Science. 2007 Aug;317:638-641.
5- Mortazavi B, Fan Z, Pereira LFC, Harju A, Rabczuk T. Amorphized graphene: A stiff material with low thermal conductivity. Carbon. 2016 Jul;103:318-326.
6- Izadifar M, Thissen P, Abadi R, Jam AN, Gohari S, Burvill C, Rabczuk T. Fracture toughness of various percentage of doping of boron atoms on the mechanical properties of polycrystalline graphene: A molecular dynamics study. Physica E: Low-dimensional Systems and Nanostructures. 2019 Oct;114:113614.
7- Westervelt RM. Graphene Nanoelectronics. Science. 2008 Apr;320:324-325.
8- Silani H, Talebi H, Hamouda AM, Rabczuk T. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science. 2015 Sep;15:041-047.
9- Lee C, Wei X, Kysar JW, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008 Jul;321:385-388.
10- Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters. 2008 Sep;92:151911.
11- Ghan C, Lv X, Han Z, Chen C, Xu Z, Liu Q. The adsorption enhancement of graphene for fluorine and chlorine from water. Applied Surface Science. 2020 Jun;516:146157.
12- Ke Qingqing, Wang J. Graphene-based materials for supercapacitor electrodes-A review. Materiomics. 2016 Sep;2:37-54.
13- Mahbuba K, Beeler B, Jokisaari A. Grain boundary self-diffusion and point defect interactions in α-U via molecular dynamics. Journal of Nuclear Materials. 2025 Jan;604:155521.
14- Becton M, Wang X. Grain-size Dependence of Mechanical Properties in Polycrystalline Boron-Nitride: A Computational Study. Physical Chemistry Chemical Physics. 2015 Jul;17:849-901.
15- Shishir IR, Elapolu MS, Tabarraei A. Investigation of fracture and mechanical properties of monolayer C3N using molecular dynamic simulations. Mechanics of Materials. 2021 Mar;160:103895.
16- Dadrasi A, Albooyeh A, Fooladpanjeh S, Salmankhani A, Mashhadzadeh AH, Saeb MR. Theoretical examination of the fracture behavior of BC3 polycrystalline nanosheets: Effect of crack size and temperature. Mechanics of Materials. 2022 Jan;165:104158.
17- Fan L, Bian Z, Huang Z, Song F, Xia Y, Xu J. New insight into bonding energy and stress distribution of graphene oxide/hexagonal boron nitride: Functional group and grain boundary effect. Diamond & Related Materials. 2022 Sep;127:109185.
18- Bagheri B, Dehghani MZ, Safa ME, Zarrintaj P, Mashhadzadeh AH, Ganjali MR, Saeb MR. Fracture fingerprint of polycrystalline C3N nanosheets: Theoretical basis. Journal of Molecular Graphics and Modelling. 2021 Mar;106:107899.
19- Zhang J, Zhao J, Lu J. Intrinsic Strength and Failure Behaviors of Graphene Grain Boundaries. ACSNANO. 2012 Feb;6:704-711.
20- Shirazi AHN, Abadi R, Izadifar M, Alajlan N, Rabczuk T. Mechanical responses of pristine and defective C3N nanosheets studied by molecular dynamics simulations. Computational Materials Science. 2018 Mar;147:316-321.
21- Molaei F, Dehghani MZ, Salmankhani A, Fooladpanjeh S, Sajadi SM, Safa ME, Abida O, Habibzadeh S, Mashhadzadeh AM, Saeb MR. Applying molecular dynamics simulation to take the fracture fingerprint of polycrystalline SiC nanosheets. Computational Materials Science. 2021 Apr;200:110770.
22- Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Parallel Computational Science Department. 1993 Jun;17:141-145.
23- Kinaci A, Haskins C, Cagin T. Thermal conductivity of BN-C nanostructures. Physical Review B. 2012 Sep;86:115410.
24- Kurdyumov AV, Solozhenko VL, Zelyavski WB. Lattice Parameters of Boron Nitride Polymorphous Modifications as a Function of Their Crystal-Structure Perfection. Journal of Applied Crystal. 1995 Apr;28:540-545.
25- Zhuang Z, Chang J, Fan J, Li M, Dumitrica T, Xu H. Mechanical properties of knitted carbon nanotube sheet: A molecular dynamics study. Diamond and Related Materials. 2025 Jan;17:112005.
26- Liu Z, Liu H, Wang Y, Xu Z, Tian L, Zhang C, Zhang K, Li R. Significantly improved interfacial mechanical properties in boron nitride nanosheet/Ti composite via nano-configuration: A molecular dynamics study. Computational Materials Science. 2023 Sep;228:112347.
27- Zhao H, Wang H. Molecular dynamics simulation of the mechanical properties of multi‑walled nanotube comprising X‑graphene and Y‑graphene with different stacking orders. Journal of Mathematical Chemistry. 2024 Dec;14:114785.
28- Zhang X, Chen Z, Lu L, Wang J. Molecular Dynamics Simulations of the Mechanical Properties of Cellulose Nanocrystals-Graphene Layered Nanocomposites. Nanomaterials. 2022 Nov;12:4170.
29- Zhang X, Liu S, Liu H, Zhang J, Yang X. Molecular dynamics simulation of the mechanical properties of multilayer graphene oxide nanosheets. RSC Advances. 2017 Dec;7:005-011.
30- Akter R, Khan M, Nobin MN, Ali MS, Hossain MM, Rahaman MZ, Ali ML. Effects of grain boundary and chemical short-range order on mechanical properties of NiCoCr multi-principal element alloys: A molecular dynamics simulations. Materialstoday. 2023 Agu;36:106630.
31- Dadrasi A, Fooladpanjeh S, Albooyeh A, Salmankhani A, Mashhadzadeh Ah, Saeb MR. A theoretical insight into the fracture behavior of the edge-cracked polycrystalline BC3 nanosheets. Computational Materials Science. 2021 Dec;192:110346.
32- Dehghani MZ, Mashhadzadeh AH, Salmankhani A, Karami Z, Habibzadeh S, Ganjali MR, Saeb MR. Fracture toughness and crack propagation behavior of nanoscale beryllium oxide graphene-like structures: A molecular dynamics simulation analysis. Engineering Fracture Mechanics. 2020 Apr;235:107194.
33- Bao H, Huang Y, Yang Z, Sun Y, Bai Y, Miao Y, Chu PK, Xu K, Ma F. Molecular Dynamics Simulation of Nanocrack Propagation in Single-Layer MoS2 Nanosheets. The Journal of Physical Chemistry. 2018 Nov;122:351-360.
34- Zahedi RK, Shirazi AHN, Alimouri P, Alajlan N, Rabczuk T. Mechanical properties of graphene-like BC3; a molecular dynamics study. Computational Materials Science. 2019 Apr;168:1-10.
35- Dadrasi A, Fooladpanjeh S, Gharahbagh AA. Interactions between HA/GO/epoxy resin nanocomposites: optimization, modeling and mechanical performance using central composite design and genetic algorithm. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2019 Jan;41:151-156.
36- Dadrasi A, Albooyeh AR, Fooladpanjeh S, Shad MD, Beynaghi M. RSM and ANN modeling of the energy absorption behavior of steel thin‑walled columns: a multi‑objective optimization using the genetic algorithm. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020 Dec;42:114572.