مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی ‌عملکرد‌‌‌‌ دینامیکی‌ ‌شناور ‌تندرو با هندسه‌ی اصلاح شده در دریای خزر با استفاده از روش تئوری نواری

نویسندگان
دانشگاه صنعتی نوشیروانی بابل
چکیده
در این مقاله از روش تئوری نواری مبتنی بر تکنیک کلوز-فیت برای شبیه‌سازی دینامیک شناور تندرو استفاده شده است. شبیه‌سازی دینامیکی حرکات کشتی در موج منظم برای دو شناور پروازی که نتایج دقیقی از آنها در دسترس بود انجام گرفت و نتایج بدست آمده از روش ارائه شده در این پژوهش از تطابق مناسبی با داده‌های موجود برخوردار بود. بر همین اساس، رفتار دینامیکی شناور تندرو مبنا (ESC) و شناور با دماغه‌ی اصلاح شده (AXE) در شرایط دریای نامنظم تحلیل شده و اثرات تغییرات دماغه در چندین حوزه مورد بررسی قرار گرفت. برای تحلیل رفتار دینامیکی این دو شناور، سه ارتفاع موج مؤثر 5/1، 5/3 و 5/5 متر در نظر گرفته شد. شتاب‌ عمودی در محل عمود سینه در سرعت‌های مختلف کشتی و زوایای متفاوت امواج مورد ارزیابی قرار گرفت. همچنین حرکت مطلق در عمود سینه، احتمال وقوع کوبش کف در شرایط مختلف و برخی دیگر از عوامل مؤثر در دینامیک کشتی تحلیل شد. اضافه شدن فرم دماغه‌ی تبری شکل به این بدنه‌ی پروازی باعث افزایش شتاب‌ها و دامنه‌ی حرکات در حالت موج از مقابل شده است. در مقابل، شناور دماغه‌ی تبری شکل رفتار مناسب‌تری در زوایای دیگر برخورد با امواج دارد. همچنین، تغییر فرم دماغه باعث کاهش چشمگیر احتمال وقوع کوبش کف در همه‌ی سرعت‌ها، زوایا و ارتفاع‌های موج شده است. علاوه بر آن، استفاده از فرم جدید توانسته است در شرایط شدید دریا، در سرعت 35 گره‌ی دریایی، مقدار مقاومت افزوده را 14.7 درصد نسبت به شناور اصلی کاهش دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the dynamic performance of a modified high-speed craft in the Caspian Sea using the strip theory method

نویسندگان English

Abdolkarim Mohammadi
Mahdi Yousefifard
Fattaneh Morshedsolouk
Babol Noshirvani University of Technology
چکیده English

In this paper, the strip theory method based on the close-fit technique is used to simulate the dynamics of a high-speed craft. Dynamic simulation of ship motions in regular waves was performed for two bodies, and the results obtained from the current method were in good agreement with the experimental data. Accordingly, the dynamic behavior of the standard high-speed craft (ESC) and the modified bow craft (AXE) in rough sea conditions was analyzed, and the effects of bow changes were examined in several fields. To analyze the dynamic behavior of these two vessels, three significant wave heights of 1.5, 3.5, and 5.5 meters were considered. The vertical acceleration at the Fore perpendicular (FP) was evaluated at different ship speeds and different wave angles. Also, the absolute movement in the Fore perpendicular, the probability of slamming occurrence in different conditions, and some other factors affecting the dynamics of the ship were analyzed. The addition of an axe-bow shape to the original body has increased acceleration and range of motion in the head sea condition. In contrast, the axe-bow hull form behaves more appropriately at other angles of incident waves. Also, the change in bow shape has significantly reduced the probability of slamming at all speeds, angles, and wave heights. In addition, the use of the new form has been able to reduce added resistance by 14.7 percent compared to the original vessel in severe sea conditions at speeds of 35 knots

کلیدواژه‌ها English

Strip theory method
seakeeping
high-speed craft
Axe-bow
[1] Savitsky D. On the seakeeping of planing hulls. Marine Technology and SNAME News. 1968 Apr 1;5(02):164-74.
[2] Sottorf W. Experiments with planing surfaces. 1934 Mar 1.
[3] Savitsky D. Hydrodynamic design of planing hulls. Marine Technology and SNAME News. 1964 Oct 1;1(04):71-95.
[4] Clement EP, Blount DL. Resistance tests of a systematic series of planing hull forms. Trans. sname. 1963 Nov 14;71(3):491-579.
[5] Vanden-Broeck JM. Nonlinear stern waves. Journal of Fluid Mechanics. 1980 Feb;96(3):603-11.
[6] Fridsma G. A systematic study of the rough-water performance of planing boats. Hoboken, NJ: Davidson Laboratory, Stevens Institute of Technology; 1969 Nov 1.
[7] Fridsma G. A systematic study of the rough water performance of planing boats. Part II: Irregular waves. Stevens Institute of Technology, Davidson Laboratory, Castle Point Station, Hoboken, New Yersey, USA, Report No. SIT-DL-71-1495. 1969.
[8] Martin M. Theoretical prediction of motions of high-speed planing boats in waves. Journal of Ship Research. 1978 Sep 1;22(03):140-69.
[9] Savitsky D, Brown PW. Procedures for hydrodynamic evaluation of planing hulls in smooth and rough water. Marine Technology and SNAME News. 1976 Oct 1;13(04):381-400.
[10] Blok JJ, Beukelman W. The high-speed displacement ship systematic series hull forms--seakeeping characteristics. Society of Naval Architects and Marine Engineers-Transactions. 1984;92(1984).
[11] Keuning JA. Nonlinear behaviour of fast monohulls in head waves. 1964.
[12] Keuning A., Gerritsma J., and van Terwisga P. F. Resistance tests of a series of planing hull forms with 30 degrees deadrise angle. International Shipbuilding Progress, 40:333–385, 1992.
[13] Keuning JA, Gerritsma J. Resistance tests of a series of planing hull forms with 25 degrees deadrise angle. International Shipbuilding Progress. 1982 Sep 1;29(337):222-49.
[14] Blok J. J. and Roeloffs H. W. The influence of the forebody deadrise on the performance in a seaway. Technical Report 49207-1-HT, Marin, 1989.
[15] Trillo R. L. High speed over water, ideas from the past, the present and the future. In Proceedings of the 1stInternational Conference on Fast Sea Transportation, 1991.
[16] Lavis DR. Hovercraft Development. InIntersociety High-Performance Marine Vehicle Conference and Exhibit, Arlington, Virginia 1992 Jun 24.
[17] Keuning J. A. and vanWalree. F. The comparison of the hydrodynamic behaviour of three fast patrol boats with special hull geometries. In Proceedings of the 5th International Conference on High Performance Marine Vehicles, 137–152, Launceton, Australia, 2006.
[18] Keuning JA. Grinding the bow” or “How to improve the operability of fast monohulls. International shipbuilding progress. 2006 Jan 1;53(4):281-310.
[19] Armstrong T. The future for commercial fast craft - learning from events since FAST‘91. In Proceedings of the 10th International Conference on Fast Sea Transportation, 3–12, 2009.
[20] Keuning J.A. and Pinkster J. Optimisation of the seakeeping behaviour of a fast monohull. In Proceeding of the 3th International Conference on Fast Sea Transportation, 1995.
[21] Keuning J. A., Toxopeus S. and Pinkster J. The effect of bow shape on the seakeeping performance of a fast monohull. In Proceedings of the 6th International Conference on Fast Sea Transportation, 197–212, 2001.
[22] Keuning J. A. and vanWalree F. The comparison of the hydrodynamic behavior of three fast patrol boats with special hull geometries. In Proceedings of the 5th International Conference on High Performance Marine Vehicles, 137–152, Launceton, Australia, 2006.
[23] Romadhoni R, Utama IK, Li B. Computational fluid dynamics analysis into the improvement of seakeeping characteristics of a fast craft using axe-bow. IPTEK Journal of Proceedings Series. 2016 Jan 28;2(1).
[24] Seo J, Choi HK, Jeong UC, Lee DK, Rhee SH, Jung CM, Yoo J. Model tests on resistance and seakeeping performance of wave-piercing high-speed vessel with spray rails. International Journal of Naval Architecture and Ocean Engineering. 2016 Sep 1;8(5):442-55.
[25] Rijkens AA, Mikelic A. The hydrodynamic comparison between a conventional and an Axe Bow frigate hull. InProceedings of the International Naval Engineering Conference 2022 (Vol. 16, p. 31).
[26] Windyandari A, Yusim AK, Ilham R, Zakki AF. Seakeeping Behavior of Axe Bow Patrol Boat with the Variation of Waterline Spline Type and Submerged Bow Depth. International Journal on Engineering Applications. 2023 Jan 1;11(1).
[27] Tavakoli S., Zhang M., Kondratenko AA., Hirdaris S. A review on the hydrodynamics of planing hulls. Ocean Engineering 303 (2024) 117046.
[28] Tran TG., Doan VT., Tran H. A new approach to improving the accuracy of seakeeping predictions using strip theory for high-speed vessels. Ocean Engineering 327 (2025) 120995.
[29] Azimoh FM. Validation of a strip theory approach to estimating ship motion from sea state. Master thesis, Cape Peninsula University of Technology, 2023.
[30] Rijkens, A.A.K., Mikelic, A. The hydrodynamic comparison between a conventional and an Axe Bow frigate hull. Proceedings of the International Naval Engineering Conference (2022), 16, Article 31.
[31] Salvesen N., Tuck E., and Faltinsen, O. Ship motions and sea loads. The Society of Naval Architects and Marine Engineers, 78, pp. 250-279, 1970.
[32] Lewis E.V. Principles of naval architecture. The Society of Naval Architects and Marine En‌gineers, 3(2), pp. 1-190, 1989.
[33] Korvin-Kroukovski B. V. and Jacobs W. R. Pitching and heaving motions of a ship in regular waves. Transactions Society of Naval Architectures and Marine Engineers, 65:590–632, 1957.
[34] Krylov A. N. A general theory of the oscillations of a ship on waves. Transactions of the Royal Institution of Naval Architects, 40, 1896.
[35] Ursell F. On the vertical added mass and damping of floating bodies at zero speed ahead. In Proceedings of the Symposium of Ships in Seaway, 1957.
[36] Grim O. Berechnung der durch Schwingungen eines Schiffskörpers erzeugten hydrodynamischen Kräfte. Jahrbuch der Schiffsbautechnischen Gesellschaft. 1953;47:277-99.
[37] Fan Y. T., and Wilson P. A. Time domain non linear strip theory for ship motions”, International Journal of Mar‌itime Engineering, 146, pp. 33-47, 2004.
[38] Lewis E.V. Principles of naval architecture. The Society of Naval Architects and Marine En‌gineers, Vol. 3, 2nd revision, pp. 1-190, 1989.
[39] Frank W. Oscillation of cylinders in or below the free surface of deep fluids. Naval Ship Research and Development Center, Vol. 2375, Oct. 1967.
[40] Lee C. M., Jones H., Bedel J. W. Added mass and damping coefficients of heaving twin cylinders in a free surface. Naval Ship Research and Development Center, Naval Ship Systems Commands, No. NSRDC-3695, Dec. 1971.
[41] Anıl KL., Danışman DB., Sarıöz K. Simulation based calculation of ship motions in extreme seas with a body-exact strip theory approach. Scientific Journal of Maritime Research 35 (2021), 36-48.
[42] Pepijn de JONG, “SEAKEEPING BEHAVIOUR OF HIGH SPEED SHIPS” , 2011.
[43] Golshani A, Rezaei M. Modeling the waves induced by the January 2019 storm in the Caspian Sea in order to investigate the reasons of partial damage of western arm of Caspian Port breakwater. Journal of Oceanography 2020; 11 (42) :49-59.