مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تأثیر رژیم‌های خنک‌کاری و روانکاری مختلف بر روی مکانیزم سایش ابزار در فرآیند فرزکاری آلومینیوم 7075

نویسندگان
واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
این تحقیق به بررسی سایش ابزار و آنالیز عنصری روی سطوح ابزار برشی، توپوگرافی سطح ماشینکاری شده و تغییرات ریزسختی در سطح مقطع عرضی نمونه­های فرزکاری شده آلیاژ آلومینیوم 7075 تحت روش­های خشک، آب‌صابون و مقدار روانکاری کمینه (MQL) می­پردازد. روش MQL، با کاهش ضریب اصطکاک و انتقال موثر حرارت، عملکرد بهتری در کاهش سایش ابزار و بهبود کیفیت سطح قطعه‌کار نسبت به حالات خشک و آب‌صابون داشته است. در ماشینکاری خشک، عیوبی نظیر لایه انباشته و لب­پرشدگی ابزار ایجاد شدند. در فرزکاری MQL این عیوب کاهش چشمگیری داشتند و لب­پرشدگی روی سطح ابزار حذف شد. بر اساس نتایج آنالیز عنصری EDAX روی سطوح ابزار، عیب سوختگی توامان با لایه چسبیده تحت هر سه حالت خشک، آب‌صابون و MQL ایجاد شد. افزایش سرعت برشی سبب افزایش میزان اکسیداسیون و افزایش علائم سوختگی بر روی سطح ابزار، در هر سه حالت شد. با افزایش سرعت برشی، مقدار میانگین سختی قطعه­کار در هر سه حالت نسبت به ماده پایه (نمونه خام) افزایش یافته است. در حالت خشک در نبود سیال خنک‌کار و روانکار، با افزایش دمای موضع برش، نرم­شدگی حرارتی رخ داده که منجر به مقادیر سختی کمتر قطعه­کار آلومینیومی نسبت به دو حالت دیگر شده است. کمترین میزان عیوب ذرات ‌چسبیده در بحث توپوگرافی سطح ماشینکاری شده قطعه­کار، مربوط به حالت MQL به‌ دلیل وجود روانکار بوده که سبب ایجاد فیلم روغن در سطح قطعه‌کار و مانع از تماس مستقیم ابزار شده و همچنین ضریب اصطکاک سطح کاهش یافته است. بیشترین تراکم و تنوع عیوب در حالت خشک ایجاد گردید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Effect of Different Cooling and Lubrication Regimes on the Tool Wear Mechanism in Milling Process of Aluminium 7075

نویسندگان English

Ali Jamshidi
Behzad Jabbaripour
Mohammad Hassan Pachenari
Islamic Azad University, Tehran, Iran
چکیده English

This study investigates tool wear and elemental analysis (EDAX) on cutting tool surfaces, machined surface topography and microhardness variations in the cross-section of milled aluminium 7075 samples under dry, Flood Cooling and minimum quantity lubrication (MQL) conditions. The MQL method, by reducing the friction coefficient and effectively transferring heat, demonstrated better performance in reducing tool wear and improving workpiece surface quality compared to dry and water-based coolant machining. In dry machining, defects such as built-up layers and tool chipping were observed. In MQL milling, these defects were significantly reduced and tool chipping was eliminated. Based on elemental analysis of the tool surfaces, a combination of burning defects and adhered layers was detected in all three conditions. Increasing the cutting speed led to higher oxidation levels and a greater density of burn marks in all cases. The burn area was smallest in MQL machining and largest in dry machining. With increasing cutting speed, the workpiece average hardness in all three conditions increased compared to the bulk material. In dry conditions, due to the absence of a coolant and lubricant, localized heating at the cutting zone caused thermal softening, resulting in lower hardness values compared to the other conditions. Regarding surface topography, the lowest amount of adhered particle defects was observed in the MQL condition due to the presence of a lubricant film on the work surface, which prevented direct tool contact and reduced the surface friction coefficient. Conversely, the highest density and variety of defects were observed in dry machining

کلیدواژه‌ها English

milling
Aluminium 7075
Tool wear
Topography
Microhardness
Minimum Quantity Lubrication (MQL)
[1] Khalid M.Y, Umer R, Khan K.A. Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications. Results in Engineering. 2023; 20: 101372.
[2] Khanna N, Shah P, Chetan. Comparative analysis of dry, flood, MQL and cryogenic CO2 techniques during the machining of 15-5-PH SS alloy. Tribology International. 2020; 146: 106196.
[3] Jabbaripour B, Sadeghi M.H, Shabgard M.R, Faraji H. Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of γ-TiAl intermetallic. Manufacturing Processes. 2013; 15 (1): 56-68.
[4] Jabbaripour B, Sadeghi M.H, Shabgard M.R, Faraji H. Investigating Output Characteristics in Powder Mixed Electrical Discharge Machining of γ–TiAl Intermetallic. Modares Mechanical Engineering. 2013; 12 (5) :74-86 (in Persian).
[5] Jabbaripour B, Ansari M.J, Taheri A. Investigating delamination, uncut fibers, tolerances and surface topography in high speed Drilling of Polypropylene Composite Reinforced with carbonfibers and calcium. International Journal of Material Forming. 2021; 14 (6): 1417-1437.
[6] Marques A, Suarez M.P, Sales W.F, Machado A.R, Turning of Inconel 718 with whisker-reinforced ceramic tools applying vegetable-based cutting fluid mixed with solid lubricants by MQL. Journal of Materials Processing Technology. 2019; 266: 530-543.
[7] Azami A, Salahshournejad Z, Shakouri E, Sharifi A.R, Saraeian P. Influence of nano- minimum quantity lubrication with MoS2 and CuO nanoparticles on cutting forces and surface roughness during grinding of AISI D2 steel. Jouranl of manufacturing processes. 2023; 87: 209-220.
[8] Saravanakumar M, Tamilselvam P, Subramanian M. Eco-friendly machining of super duplex stainless steel (UNS S32760) under nitrogen gas cooled and vegetable oil based MQL system. PalArch's Journal of Archaeology of Egypt. 2020; 17: 5267-5294.
[9] Zhang S, Li J.F, Wang Y.W. Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. Journal of Cleaner Production. 2012; 32: 81-87.
[10] Sarkar S, Datta S, Machining Performance of Inconel 718 Under Dry, MQL, and Nanofluid MQL Conditions: Application of Coconut Oil (Base Fluid) and Multi-walled Carbon Nanotubes as Additives. Arabian Journal for Science and Engineering. 2021; 46: 2371-2395.
[11] Zhang Y, Liu N, Li X, Zheng Y, Wu L, He T, Xia H, Li D. A new TiAlSiN coated tool and its machining performance evaluation for milling difficult-to-machining materials under MQL conditions. Journal of Manufacturing Processes. 2023; 101: 589-599.
[12] Gupta M.K, Niesłony P, Sarikaya M, Korkmaz M.E, Kuntoglu M, Krolczyk G.M. Studies on Geometrical Features of Tool Wear and Other Important Machining Characteristics in Sustainable Turning of Aluminium Alloys. International Journal of Precision Engineering and Manufacturing-Green Technology. 2023; 10: 943-957.
[13] Yazida M.Z.A, Ibrahimb G.A, Saidc A.Y.M, CheHaronb C.H, Ghanib J.A. Surface integrity of Inconel 718 when finish turning with PVD coated carbide tool under MQL. Procedia Engineering. 2011; 19: 396-401.
[14] Wika K.K, Litwa P, Hitchens C. Impact of supercritical carbon dioxide cooling with Minimum Quantity Lubrication on tool wear and surface integrity in the milling of AISI 304L stainless steel. Wear. 2019; 426-427: 1691-1701.
[15] Ozdemir E, Gullu A. Investigation of the surface quality and machinability of AISI 316LVM, Proceedings of the Institution of Mechanical Engineers. Part E: Journal of Process Mechanical Engineering. 2023.
[16] Bordina A, Bruschi S, Ghiotti A. The effect of cutting speed and feed rate on the surface integrity in dry turning of CoCrMo alloy. Procedia CIRP. 2014; 13: 219-224.
[17] Andersson. A. Built-up edge formation in stainless steel milling. Master of Science Thesis MSE. Sweden. KTH royal institute of technology; 2017.
[18] Rajaguru J, Arunachalam N. A comprehensive investigation on the effect of flood and MQL coolant on the machinability and stress corrosion cracking of super duplex stainless steel. Journal of Materials Processing Technology. 2020; 276: 116417.
[19] Pal A, Chatha S.S, Sidhu H.S. Performance Evaluation of Various Vegetable Oils and Distilled Water as Base Fluids Using Eco friendly MQL Technique in Drilling of AISI 321 Stainless Steel. International Journal of Precision Engineering and Manufacturing-Green Technology. 2022; 9: 745-764.