[1] L. He and Y. Fan, “A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs,” Renewable and Sustainable Energy Reviews, 2020.
[2] “Global natural gas reserves.” Accessed: Apr. 07, 2025. [Online]. Available: https://www.statista.com/statistics/281873/worldwide-reserves-of-natural-gas/
[3] Z. Tang, T. Zhang, D. Luo, Y. Wang, Z. Hu, and R. T. Yang, “Catalytic Combustion of Methane: From Mechanism and Materials Properties to Catalytic Performance,” ACS Catal., vol. 12, no. 21, pp. 13457–13474, Nov. 2022, doi: 10.1021/acscatal.2c03321.
[4] J. Chen, H. Arandiyan, X. Gao, and J. Li, “Recent Advances in Catalysts for Methane Combustion,” Catal Surv Asia, vol. 19, no. 3, pp. 140–171, Sep. 2015, doi: 10.1007/s10563-015-9191-5.
[5] “Regulation - 813/2013 - EN - EUR-Lex.” Accessed: Jan. 25, 2025. [Online]. Available: https://eur-lex.europa.eu/eli/reg/2013/813/oj/eng
[6] “Global Energy Review 2025 – Analysis,” IEA. Accessed: Apr. 07, 2025. [Online]. Available: https://www.iea.org/reports/global-energy-review-2025
[7] P. Adibi, “THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY In situ Studies of Platinum Catalyst Sintering,” 2016. Accessed: Sep. 23, 2024. [Online]. Available: https://www.semanticscholar.org
[8] غ. مرادی, کاتالیست های ناهمگن. انتشارات دانشگاه رازی, 1392. Accessed: Dec. 25, 2024. [Online]. Available: https://press.razi.ac.ir/book_194.html
[9] D. Nasrallah M, “Sintering process and catalysis,” Int J Nanomater Nanotechnol Nanomed, pp. 001–003, Jan. 2018, doi: 10.17352/2455-3492.000023.
[10] F. Zaera, “The surface chemistry of heterogeneous catalysis: Mechanisms, selectivity, and active sites,” The Chemical Record, vol. 5, no. 3, pp. 133–144, Jan. 2005, doi: 10.1002/tcr.20040.
[11] R. J. Farrauto, L. Dorazio, and C. H. Bartholomew, Introduction to catalysis and industrial catalytic processes. Hoboken: John Wiley & Sons, Inc, 2016.
[12] M. F. M. Zwinkels, S. G. Järås, P. G. Menon, and T. A. Griffin, “Catalytic Materials for High-Temperature Combustion,” Catalysis Reviews, vol. 35, no. 3, pp. 319–358, Aug. 1993, doi: 10.1080/01614949308013910.
[13] S. Taylor, “A theory of the catalytic surface,” 1935.
[14] J. G. Firth and H. B. Holland, “Catalytic oxidation of methane over noble metals,” Trans. Faraday Soc., vol. 65, p. 1121, 1969, doi: 10.1039/tf9696501121.
[15] J. G. Firth and H. B. Holland, “Heterogeneous Oxidation of Methane over Palladium Catalysts,” Nature, vol. 217, no. 5135, pp. 1252–1253, Mar. 1968, doi: 10.1038/2171252a0.
[16] X. Feng et al., “Progress and key challenges in catalytic combustion of lean methane,” Journal of Energy Chemistry, vol. 75, pp. 173–215, Dec. 2022, doi: 10.1016/j.jechem.2022.08.001.
[17] C. F. Cullis, T. G. Nevell, and D. L. Trimm, “Role of the catalyst support in the oxidation of methane over palladium,” J. Chem. Soc., Faraday Trans. 1, vol. 68, no. 0, p. 1406, 1972, doi: 10.1039/f19726801406.
[18] C. Cullis, “Oxidation of methane over supported precious metal catalysts,” Journal of Catalysis, vol. 83, no. 2, pp. 267–285, Oct. 1983, doi: 10.1016/0021-9517(83)90054-4.
[19] J. R. Grace, “High-velocity fluidized bed reactors,” Chemical Engineering Science, vol. 45, no. 8, pp. 1953–1966, Jan. 1990, doi: 10.1016/0009-2509(90)80070-U.
[20] P. Munnik, P. E. De Jongh, and K. P. De Jong, “Recent Developments in the Synthesis of Supported Catalysts,” Chem. Rev., vol. 115, no. 14, pp. 6687–6718, Jul. 2015, doi: 10.1021/cr500486u.
[21] B. A. T. Mehrabadi, S. Eskandari, U. Khan, R. D. White, and J. R. Regalbuto, “A Review of Preparation Methods for Supported Metal Catalysts,” in Advances in Catalysis, vol. 61, Elsevier, 2017, pp. 1–35. doi: 10.1016/bs.acat.2017.10.001.
[22] K. Sekizawa, K. Eguchi, H. Widjaja, M. Machida, and H. Arai, “Property of Pd-supported catalysts for catalytic combustion,” Catalysis Today, vol. 28, no. 3, pp. 245–250, May 1996, doi: 10.1016/0920-5861(95)00241-3.
[23] H. Widjaja, K. Sekizawa, K. Eguchi, and H. Arai, “Oxidation of methane over Pd/mixed oxides for catalytic combustion,” Catalysis Today, vol. 47, no. 1–4, pp. 95–101, Jan. 1999, doi: 10.1016/S0920-5861(98)00286-7.
[24] Y. Yazawa et al., “Acid strength of support materials as a factor controlling catalytic activity of noble metal catalysts for catalytic combustion,” in Studies in Surface Science and Catalysis, vol. 130, Elsevier, 2000, pp. 2189–2194. doi: 10.1016/S0167-2991(00)80793-4.
[25] J. Chen et al., “Particle Size Effects in Stoichiometric Methane Combustion: Structure–Activity Relationship of Pd Catalyst Supported on Gamma-Alumina,” ACS Catal., vol. 10, no. 18, pp. 10339–10349, Sep. 2020, doi: 10.1021/acscatal.0c03111.
[26] D. Jiang et al., “Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal,” Nat Catal, vol. 6, no. 7, pp. 618–627, Jul. 2023, doi: 10.1038/s41929-023-00983-8.
[27] H. Duan et al., “Catalytic Combustion of Methane over Noble Metal Catalysts,” ACS Catal., vol. 14, no. 23, pp. 17972–17992, Dec. 2024, doi: 10.1021/acscatal.4c05650.
[28] L. M. T. Simplıcio, S. T. Brandao, E. A. Sales, L. Lietti, and F. Bozon-Verduraz, “Methane combustion over PdO-alumina catalysts: The effect of palladium precursors,” 2006.
[29] J.-H. Park, J.-H. Ahn, H.-I. Sim, G. Seo, H. S. Han, and C.-H. Shin, “Low-temperature combustion of methane using PdO/Al2O3 catalyst: Influence of crystalline phase of Al2O3 support,” Catalysis Communications, vol. 56, pp. 157–163, Nov. 2014, doi: 10.1016/j.catcom.2014.07.022.
[30] X. Zou, Z. Ma, J. Deng, J. Zhong, Y. He, and J. Liu, “Core-shell PdO@SiO2/Al2O3 with sinter-resistance and water-tolerance promoting catalytic methane combustion,” Chemical Engineering Journal, vol. 396, p. 125275, Sep. 2020, doi: 10.1016/j.cej.2020.125275.
[31] J. Li, Y. Zhang, W. Shan, and H. He, “Comparative investigation of methane combustion over palladium-based catalysts supported on mesoporous MgAl2O4 and Al2O3,” Fuel, vol. 340, p. 127493, May 2023, doi: 10.1016/j.fuel.2023.127493.
[32] W. Shi et al., “Nano-sized alumina supported palladium catalysts for methane combustion with excellent thermal stability,” Journal of Environmental Sciences, vol. 126, pp. 333–347, Apr. 2023, doi: 10.1016/j.jes.2022.04.030.
[33] X. Guo et al., “Computational study of palladium percentage and oxygen ratio effects on air-methane catalytic combustion in a helical microchannel: A molecular dynamics approach,” Journal of Molecular Liquids, vol. 391, p. 123265, Dec. 2023, doi: 10.1016/j.molliq.2023.123265.
[34] Y. Xie et al., “Enhanced catalytic performance of methane combustion over zeolite-supported Pd catalysts with the lanthanum,” Catalysis Today, vol. 364, pp. 16–20, Mar. 2021, doi: 10.1016/j.cattod.2019.11.030.
[35] J. Yang et al., “A Hydrothermally Stable Irreducible Oxide‐Modified Pd/MgAl2 O4 Catalyst for Methane Combustion,” Angewandte Chemie, vol. 132, no. 42, pp. 18680–18684, Oct. 2020, doi: 10.1002/ange.202009050.
[36] G. Zhao, X. Pan, Z. Zhang, Y. Liu, and Y. Lu, “A thin-felt Pd–MgO–Al2O3/Al-fiber catalyst for catalytic combustion of methane with resistance to water-vapor poisoning,” Journal of Catalysis, vol. 384, pp. 122–135, Apr. 2020, doi: 10.1016/j.jcat.2020.01.013.
[37] Y. Ding et al., “Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support,” Applied Catalysis B: Environmental, vol. 266, p. 118631, Jun. 2020, doi: 10.1016/j.apcatb.2020.118631.
[38] J. Chen, K. Giewont, E. A. Walker, J. Lee, Y. Niu, and E. A. Kyriakidou, “Cobalt-Induced PdO Formation in Low-Loading Pd/BEA Catalysts for CH4 Oxidation,” ACS Catal., vol. 11, no. 21, pp. 13066–13076, Nov. 2021, doi: 10.1021/acscatal.1c00400.
[39] Núria. J. Divins et al., “Investigation of the evolution of Pd-Pt supported on ceria for dry and wet methane oxidation,” Nat Commun, vol. 13, no. 1, p. 5080, Aug. 2022, doi: 10.1038/s41467-022-32765-4.
[40] Y. Sun, G. Xu, Y. Wang, W. Shi, Y. Yu, and H. He, “In Situ Synthesis of Encapsulated Pd@silicalite-2 for Highly Stable Methane Catalytic Combustion,” Environ. Sci. Technol., vol. 57, no. 48, pp. 20370–20379, Dec. 2023, doi: 10.1021/acs.est.3c05634.
[41] S. Sinha Majumdar, M. Moses-DeBusk, D. J. Deka, M. K. Kidder, C. R. Thomas, and J. A. Pihl, “Impact of Mg on Pd-based methane oxidation catalysts for lean-burn natural gas emissions control,” Applied Catalysis B: Environmental, vol. 341, p. 123253, Feb. 2024, doi: 10.1016/j.apcatb.2023.123253.
[42] Y. Wang et al., “Creating Atomically Iridium-Doped PdO x Nanoparticles for Efficient and Durable Methane Abatement,” Environ. Sci. Technol., vol. 58, no. 23, pp. 10357–10367, Jun. 2024, doi: 10.1021/acs.est.4c00868.
[43] J. Li, J. Lin, X. Chen, M. Feng, and Y. Zheng, “Silicon-induced optimization on phase structure and surface property of Pd/ZrO2 catalysts for enhanced methane combustion,” Applied Surface Science, vol. 643, p. 158657, Jan. 2024, doi: 10.1016/j.apsusc.2023.158657.
[44] J. Cai et al., “Electron transferring with oxygen defects on Ni-promoted Pd/Al2O3 catalysts for low-temperature lean methane combustion,” Journal of Colloid and Interface Science, vol. 671, pp. 712–724, Oct. 2024, doi: 10.1016/j.jcis.2024.05.196.
[45] J. Lin et al., “Key factors for methane combustion over palladium-based catalysts revealed by enhanced and depressed catalytic performance,” Applied Catalysis B: Environmental, vol. 340, p. 123283, Jan. 2024, doi: 10.1016/j.apcatb.2023.123283.
[46] P. Gélin, L. Urfels, M. Primet, and E. Tena, “Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: influence of water and sulphur containing compounds,” Catalysis Today, 2003.
[47] H. Xu et al., “Enhanced thermal stability of lean methane combustion by structural interactions of CeO2 with Pt/3DOM LaFeO3 catalysts,” Fuel, vol. 364, p. 131069, May 2024, doi: 10.1016/j.fuel.2024.131069.
[48] B. Hu et al., “Crystalline phase-modulated PtO nanoparticles exhibit superior methane combustion performance and sulfur poisoning resistance: Multi-interaction regulation,” Journal of Environmental Chemical Engineering, vol. 12, no. 4, p. 113140, Aug. 2024, doi: 10.1016/j.jece.2024.113140.
[49] J. Jin, C. Li, C.-W. Tsang, B. Xu, and C. Liang, “Catalytic Combustion of Methane over Pt–Ce Oxides under Scarce Oxygen Condition,” Ind. Eng. Chem. Res., vol. 55, no. 8, pp. 2293–2301, Mar. 2016, doi: 10.1021/acs.iecr.5b04202.
[50] V. P. Pakharukova, I. Yu. Pakharukov, V. I. Bukhtiyarov, and V. N. Parmon, “Alumina-supported platinum catalysts: Local atomic structure and catalytic activity for complete methane oxidation,” Applied Catalysis A: General, vol. 486, pp. 12–18, Sep. 2014, doi: 10.1016/j.apcata.2014.08.014.
[51] L. He, Y. Fan, L. Luo, J. Bellettre, and J. Yue, “Preparation of Pt/γ-Al2O3 catalyst coating in microreactors for catalytic methane combustion,” Chemical Engineering Journal, vol. 380, p. 122424, Jan. 2020, doi: 10.1016/j.cej.2019.122424.
[52] R. Torralba et al., “Total Oxidation of Methane Over Sulfur Poisoning Resistant Pt/ZrO2 Catalyst: Effect of Pt2+–Pt4+ and Pt2+–Zr4+ Dipoles at Metal-Support Interface,” Catal Lett, vol. 151, no. 6, pp. 1592–1603, Jun. 2021, doi: 10.1007/s10562-020-03411-9.
[53] G. Corro, J. Cruz-Mérida, D. Montalvo, and U. Pal, “Performance of Pt/Cr2 O3 , Pt/ZrO2 , and, Pt/γ-Al2 O3 Catalysts in Total Oxidation of Methane: Effect of Metal–Support Interaction,” Ind. Eng. Chem. Res., vol. 60, no. 51, pp. 18841–18852, Dec. 2021, doi: 10.1021/acs.iecr.1c02902.
[54] B. Cen et al., “Revealing the Different Roles of Sulfates on Pt/Al2O3 Catalyst for Methane and Propane Combustion,” Catal Lett, vol. 152, no. 3, pp. 863–871, Mar. 2022, doi: 10.1007/s10562-021-03675-9.
[55] L. Ma, C. Ding, J. Wang, H. Xu, and K. Zhang, “Lanthanide modified Pt/CeO2-based catalysts for methane partial oxidation: Relationship between catalytic activity and structure,” International Journal of Hydrogen Energy, vol. 48, no. 50, pp. 19074–19086, Jun. 2023, doi: 10.1016/j.ijhydene.2023.02.009.
[56] C. Shao et al., “Boosting propane purification on Pt/ZrOSO4 nanoflowers: Insight into the roles of different sulfate species in synergy with Pt,” Separation and Purification Technology, vol. 304, p. 122367, Jan. 2023, doi: 10.1016/j.seppur.2022.122367.
[57] J. Park et al., “Improvement of Catalytic Methane Oxidation by Nitric Acid Treatment on Pt/TiO2,” 2024.
[58] G. Corro, F. Rosales, F. Bañuelos, P. Arellanes-Lozada, O. Olivares-Xometl, and U. Pal, “Methane Oxidation with Low Pt2+ Catalyst: High Activity and Stability Against So₂, No, and H₂O Poisoning,” 2025, Accessed: Apr. 12, 2025. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5173617
[59] Y. Zhang, J. Deng, L. Zhang, W. Qiu, H. Dai, and H. He, “AuOx/Ce0.6Zr0.3Y0.1O2 nano-sized catalysts active for the oxidation of methane,” Catalysis Today, vol. 139, no. 1–2, pp. 29–36, Dec. 2008, doi: 10.1016/j.cattod.2008.08.005.
[60] R. D. Waters, J. J. Weimer, and J. E. Smith, “An investigation of the activity of coprecipitated gold catalysts for methane oxidation,” Catal Lett, vol. 30, no. 1–4, pp. 181–188, 1995, doi: 10.1007/BF00813684.
[61] M. Haruta, “Novel catalysis of gold deposited on metal oxides”.
[62] S. Eriksson, M. Nilsson, M. Boutonnet, and S. Järås, “Partial oxidation of methane over rhodium catalysts for power generation applications,” Catalysis Today, vol. 100, no. 3–4, pp. 447–451, Feb. 2005, doi: 10.1016/j.cattod.2004.09.077.
[63] A. Maione, F. André, and P. Ruiz, “The effect of Rh addition on Pd/γ-Al2O3 catalysts deposited on FeCrAlloy fibers for total combustion of methane,” Applied Catalysis A: General, vol. 333, no. 1, pp. 1–10, Dec. 2007, doi: 10.1016/j.apcata.2007.08.037.
[64] K. C. Taylor, “Chapter 2 Automobile Catalytic Converters,” in Catalysis Volume 5, J. R. Anderson and M. Boudart, Eds., De Gruyter, 1984, pp. 119–170. doi: 10.1515/9783112641040-005.
[65] J. Quinson, “Iridium and IrOx nanoparticles: an overview and review of syntheses and applications,” Advances in Colloid and Interface Science, vol. 303, p. 102643, May 2022, doi: 10.1016/j.cis.2022.102643.
[66] C. Aydin, J. Lu, N. D. Browning, and B. C. Gates, “A ‘Smart’ Catalyst: Sinter‐Resistant Supported Iridium Clusters Visualized with Electron Microscopy,” Angewandte Chemie, vol. 124, no. 24, pp. 6031–6036, Jun. 2012, doi: 10.1002/ange.201201726.
[67] J. Lu, C. Aydin, N. D. Browning, L. Wang, and B. C. Gates, “Sinter-Resistant Catalysts: Supported Iridium Nanoclusters with Intrinsically Limited Sizes,” Catal Lett, vol. 142, no. 12, pp. 1445–1451, Dec. 2012, doi: 10.1007/s10562-012-0928-8.
[68] Z. Liang, T. Li, M. Kim, A. Asthagiri, and J. F. Weaver, “Low-temperature activation of methane on the IrO2 (110) surface,” Science, vol. 356, no. 6335, pp. 299–303, Apr. 2017, doi: 10.1126/science.aam9147.
[69] K. Persson, A. Ersson, K. Jansson, N. Iverlund, and S. Jaras, “Influence of co-metals on bimetallic palladium catalysts for methane combustion,” Journal of Catalysis, vol. 231, no. 1, pp. 139–150, Apr. 2005, doi: 10.1016/j.jcat.2005.01.001.
[70] R. Strobel, J.-D. Grunwaldt, A. Camenzind, S. E. Pratsinis, and A. Baiker, “Flame-made Alumina Supported Pd–Pt Nanoparticles: Structural Properties and Catalytic Behavior in Methane Combustion,” Catal Lett, vol. 104, no. 1–2, pp. 9–16, Oct. 2005, doi: 10.1007/s10562-005-7429-y.
[71] G. Lapisardi et al., “Superior catalytic behaviour of Pt-doped Pd catalysts in the complete oxidation of methane at low temperature,” Catalysis Today, vol. 117, no. 4, pp. 564–568, Oct. 2006, doi: 10.1016/j.cattod.2006.06.004.
[72] K. Persson, A. Ersson, K. Jansson, J. Fierro, and S. Jaras, “Influence of molar ratio on Pd–Pt catalysts for methane combustion,” Journal of Catalysis, vol. 243, no. 1, pp. 14–24, Oct. 2006, doi: 10.1016/j.jcat.2006.06.019.
[73] G. Lapisardi, P. Gélin, A. Kaddouri, E. Garbowski, and S. Da Costa, “Pt–Pd bimetallic catalysts for methane emissions abatement,” Top Catal, vol. 42–43, no. 1–4, pp. 461–464, May 2007, doi: 10.1007/s11244-007-0225-8.
[74] P. Castellazzi, G. Groppi, and P. Forzatti, “Effect of Pt/Pd ratio on catalytic activity and redox behavior of bimetallic Pt–Pd/Al2O3 catalysts for CH4 combustion,” Applied Catalysis B: Environmental, vol. 95, no. 3–4, pp. 303–311, Apr. 2010, doi: 10.1016/j.apcatb.2010.01.008.
[75] E. D. Goodman et al., “Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability”.
[76] X. Zhao et al., “Mesoporous Pd Pt alloys: High-performance catalysts for methane combustion,” Molecular Catalysis, vol. 442, pp. 191–201, Dec. 2017, doi: 10.1016/j.mcat.2017.09.002.
[77] H. Geng, L. Zhang, Z. Yang, Y. Yan, and J. Ran, “Effect of Pd/Pt ratio on the reactivity of methane catalytic combustion in bimetallic Pd-Pt catalyst,” International Journal of Hydrogen Energy, vol. 43, no. 24, pp. 11069–11078, Jun. 2018, doi: 10.1016/j.ijhydene.2018.05.029.
[78] P. Qu et al., “A novel strategy to design PtPd bimetallic catalysts for efficient methane combustion,” Catalysis Communications, vol. 135, p. 105900, Feb. 2020, doi: 10.1016/j.catcom.2019.105900.
[79] H. Xiong et al., “Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation,” Nat Catal, vol. 4, no. 10, pp. 830–839, Oct. 2021, doi: 10.1038/s41929-021-00680-4.
[80] H. Nie, J. Y. Howe, P. T. Lachkov, and Y.-H. C. Chin, “Chemical and Structural Dynamics of Nanostructures in Bimetallic Pt–Pd Catalysts, Their Inhomogeneity, and Their Roles in Methane Oxidation,” ACS Catal., vol. 9, no. 6, pp. 5445–5461, Jun. 2019, doi: 10.1021/acscatal.9b00485.
[81] J. Lee et al., “Effect of Pt pre-sintering on the durability of PtPd/Al2O3 catalysts for CH4 oxidation,” Applied Catalysis B: Environmental, vol. 260, p. 118098, Jan. 2020, doi: 10.1016/j.apcatb.2019.118098.
[82] A. A. Saraev, S. A. Yashnik, E. Yu. Gerasimov, A. M. Kremneva, Z. S. Vinokurov, and V. V. Kaichev, “Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study,” Catalysts, vol. 11, no. 12, p. 1446, Nov. 2021, doi: 10.3390/catal11121446.
[83] A. Large et al., “Operando characterisation of alumina-supported bimetallic Pd–Pt catalysts during methane oxidation in dry and wet conditions,” J. Phys. D: Appl. Phys., vol. 54, no. 17, p. 174006, Apr. 2021, doi: 10.1088/1361-6463/abde67.
[84] J. Park et al., “Impact of Pd:Pt ratio of Pd/Pt bimetallic catalyst on CH4 oxidation,” Applied Catalysis B: Environmental, vol. 316, p. 121623, Nov. 2022, doi: 10.1016/j.apcatb.2022.121623.
[85] Z. Ma, J. Zhou, J. Lin, G. Yang, S. Liu, and G. Li, “Catalytic combustion of light hydrocarbons over Pd − Pt/Al2O3: The hidden Pt1 active sites,” Fuel, vol. 374, p. 132437, Oct. 2024, doi: 10.1016/j.fuel.2024.132437.
[86] J. Li, X. Liang, S. Xu, and J. Hao, “Catalytic performance of manganese cobalt oxides on methane combustion at low temperature,” Applied Catalysis B: Environmental, vol. 90, no. 1–2, pp. 307–312, Jul. 2009, doi: 10.1016/j.apcatb.2009.03.027.
[87] G. Rattan and M. Kumar, “CARBON MONOXIDE OXIDATION USING COBALT CATALYSTS: A SHORT REVIEW”.
[88] Y. Gao, M. Jiang, L. Yang, Z. Li, F.-X. Tian, and Y. He, “Recent progress of catalytic methane combustion over transition metal oxide catalysts,” Front. Chem., vol. 10, p. 959422, Aug. 2022, doi: 10.3389/fchem.2022.959422.
[89] D. Fino, N. Russo, G. Saracco, and V. Specchia, “CNG engines exhaust gas treatment via Pd-Spinel-type-oxide catalysts,” Catalysis Today, vol. 117, no. 4, pp. 559–563, Oct. 2006, doi: 10.1016/j.cattod.2006.06.003.
[90] J. Chen, X. Zhang, H. Arandiyan, Y. Peng, H. Chang, and J. Li, “Low temperature complete combustion of methane over cobalt chromium oxides catalysts,” Catalysis Today, vol. 201, pp. 12–18, Mar. 2013, doi: 10.1016/j.cattod.2012.03.026.
[91] S. Oh, “Methane oxidation over alumina-supported noble metal catalysts with and without cerium additives,” Journal of Catalysis, vol. 132, no. 2, pp. 287–301, Dec. 1991, doi: 10.1016/0021-9517(91)90149-X.
[92] Z. Wang, J. Lin, H. Xu, Y. Zheng, Y. Xiao, and Y. Zheng, “Zr-Doped NiO Nanoparticles for Low-Temperature Methane Combustion,” ACS Appl. Nano Mater., vol. 4, no. 11, pp. 11920–11930, Nov. 2021, doi: 10.1021/acsanm.1c02487.
[93] K. Chen, W. Li, X. Li, A. T. Ogunbiyi, and L. Yuan, “Irregularly Shaped NiO Nanostructures for Catalytic Lean Methane Combustion,” ACS Appl. Nano Mater., vol. 4, no. 5, pp. 5404–5412, May 2021, doi: 10.1021/acsanm.1c00732.
[94] Y. He et al., “In Situ Identification of Reaction Intermediates and Mechanistic Understandings of Methane Oxidation over Hematite: A Combined Experimental and Theoretical Study,” J. Am. Chem. Soc., vol. 142, no. 40, pp. 17119–17130, Oct. 2020, doi: 10.1021/jacs.0c07179.
[95] L. Liu, Z. Yao, B. Liu, and L. Dong, “Correlation of structural characteristics with catalytic performance of CuO/CexZr1−xO2 catalysts for NO reduction by CO,” Journal of Catalysis, vol. 275, no. 1, pp. 45–60, Sep. 2010, doi: 10.1016/j.jcat.2010.07.024.
[96] G. Águila, F. Gracia, J. Cortés, and P. Araya, “Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts,” Applied Catalysis B: Environmental, vol. 77, no. 3–4, pp. 325–338, Jan. 2008, doi: 10.1016/j.apcatb.2007.08.002.
[97] L. Huang, X. Zhang, L. Chen, and L. Lei, “Promotional effect of CeO2 and Y2O3 on CuO/ZrO2 catalysts for methane combustion,” Journal of Rare Earths, vol. 30, no. 2, pp. 123–127, Feb. 2012, doi: 10.1016/S1002-0721(12)60007-6.
[98] K. Zhang et al., “Effect of MnO2 morphology on its catalytic performance in lean methane combustion,” Materials Research Bulletin, vol. 111, pp. 338–341, Mar. 2019, doi: 10.1016/j.materresbull.2018.11.023.
[99] M. Kumar and G. Rattan, “EFFECT OF THE PREPARATION METHODS ON Mn PROMOTED Co/γ-Al2O3,” 2016.
[100] L. Zhong, Q. Fang, X. Li, Q. Li, C. Zhang, and G. Chen, “SO2 Resistance of Mn–Ce Catalysts for Lean Methane Combustion: Effect of the Preparation Method,” Catal Lett, vol. 149, no. 12, pp. 3268–3278, Dec. 2019, doi: 10.1007/s10562-019-02896-3.
[101] S. Ordóñez, J. R. Paredes, and F. V. Díez, “Sulphur poisoning of transition metal oxides used as catalysts for methane combustion,” Applied Catalysis A: General, vol. 341, no. 1–2, pp. 174–180, Jun. 2008, doi: 10.1016/j.apcata.2008.02.042.
[102] G. Pecchi, M. G. Jiliberto, A. Buljan, and E. J. Delgado, “Relation between defects and catalytic activity of calcium doped LaFeO3 perovskite,” Solid State Ionics, vol. 187, no. 1, pp. 27–32, Apr. 2011, doi: 10.1016/j.ssi.2011.02.014.
[103] H. R. Arandiyan and M. Parvari, “Studies on mixed metal oxides solid solutions as heterogeneous catalysts,” Braz. J. Chem. Eng., vol. 26, no. 1, pp. 63–74, Mar. 2009, doi: 10.1590/S0104-66322009000100007.
[104] Y. Wei et al., “Highly Active Catalysts of Gold Nanoparticles Supported on Three‐Dimensionally Ordered Macroporous LaFeO3 for Soot Oxidation,” Angew Chem Int Ed, vol. 50, no. 10, pp. 2326–2329, Mar. 2011, doi: 10.1002/anie.201006014.
[105] S. Xie et al., “Au/3DOM Co3O4: highly active nanocatalysts for the oxidation of carbon monoxide and toluene,” Nanoscale, vol. 5, no. 22, p. 11207, 2013, doi: 10.1039/c3nr04126c.
[106] K. Zhao, F. He, Z. Huang, A. Zheng, H. Li, and Z. Zhao, “Three-dimensionally ordered macroporous LaFeO3 perovskites for chemical-looping steam reforming of methane,” International Journal of Hydrogen Energy, vol. 39, no. 7, pp. 3243–3252, Feb. 2014, doi: 10.1016/j.ijhydene.2013.12.046.
[107] Y. Zhu, R. Tan, J. Feng, S. Ji, and L. Cao, “The reaction and poisoning mechanism of SO2 and perovskite LaCoO3 film model catalysts,” Applied Catalysis A: General, vol. 209, no. 1–2, pp. 71–77, Feb. 2001, doi: 10.1016/S0926-860X(00)00763-8.
[108] I. Rossetti, O. Buchneva, C. Biffi, and R. Rizza, “Effect of sulphur poisoning on perovskite catalysts prepared by flame-pyrolysis,” Applied Catalysis B: Environmental, vol. 89, no. 3–4, pp. 383–390, Jul. 2009, doi: 10.1016/j.apcatb.2008.12.017.
[109] S. Royer, A. Van Neste, R. Davidson, S. McIntyre, and S. Kaliaguine, “Methane Oxidation over Nanocrystalline LaCo 1- X Fe X O3 : Resistance to SO2 Poisoning,” Ind. Eng. Chem. Res., vol. 43, no. 18, pp. 5670–5680, Sep. 2004, doi: 10.1021/ie030775r.
[110] O. Buchneva, I. Rossetti, C. Biffi, M. Allieta, A. Kryukov, and N. Lebedeva, “La–Ag–Co perovskites for the catalytic flameless combustion of methane,” Applied Catalysis A: General, vol. 370, no. 1–2, pp. 24–33, Nov. 2009, doi: 10.1016/j.apcata.2009.09.025.
[111] O. Buchneva et al., “Effective Ag doping and resistance to sulfur poisoning of La–Mn perovskites for the catalytic flameless combustion of methane,” J. Mater. Chem., vol. 20, no. 44, p. 10021, 2010, doi: 10.1039/c0jm01344g.
[112] Y. Zhu, X. Wang, A. Wang, G. Wu, J. Wang, and T. Zhang, “Identification of the chemical state of Fe in barium hexaaluminate using Rietveld refinement and 57Fe Mössbauer spectroscopy,” Journal of Catalysis, vol. 283, no. 2, pp. 149–160, Oct. 2011, doi: 10.1016/j.jcat.2011.08.001.
[113] J. J. Torrez-Herrera, S. A. Korili, and A. Gil, “Progress in the synthesis and applications of hexaaluminate-based catalysts,” Catalysis Reviews, vol. 64, no. 3, pp. 592–630, Jul. 2022, doi: 10.1080/01614940.2020.1831756.
[114] M. Tian, X. D. Wang, and T. Zhang, “Hexaaluminates: a review of the structure, synthesis and catalytic performance,” Catal. Sci. Technol., vol. 6, no. 7, pp. 1984–2004, 2016, doi: 10.1039/C5CY02077H.
[115] M. Machida, K. Eguchi, and H. Arai, “Effect of additives on the surface area of oxide supports for catalytic combustion,” Journal of Catalysis, vol. 103, no. 2, pp. 385–393, Feb. 1987, doi: 10.1016/0021-9517(87)90129-1.
[116] H. Arai and M. Machida, “Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion,” Applied Catalysis A: General, vol. 138, no. 2, pp. 161–176, May 1996, doi: 10.1016/0926-860X(95)00294-4.
[117] M. Machida and K. Eguchi, “Catalytic Properties of BaMAI1lOIS+(y (M = Cr, Mn, Fe, Co, and Ni) for High-Temperature Catalytic Combustion”.
[118] S. Pengpanich, V. Meeyoo, T. Rirksomboon, and K. Bunyakiat, “Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis,” Applied Catalysis A: General, vol. 234, no. 1–2, pp. 221–233, Aug. 2002, doi: 10.1016/S0926-860X(02)00230-2.
[119] R. G. Silver, J. E. Sawyer, and J. C. Summers, Eds., Catalytic Control of Air Pollution: Mobile and Stationary Sources, vol. 495. in ACS Symposium Series, vol. 495. Washington, DC: American Chemical Society, 1992. doi: 10.1021/bk-1992-0495.
[120] M. Jørgensen and H. Grönbeck, “First-Principles Microkinetic Modeling of Methane Oxidation over Pd(100) and Pd(111),” ACS Catal., vol. 6, no. 10, pp. 6730–6738, Oct. 2016, doi: 10.1021/acscatal.6b01752.
[121] X. Bu, J. Ran, J. Niu, Z. Ou, L. Tang, and X. Huang, “Reaction mechanism insights into CH4 catalytic oxidation on Pt13 cluster: A DFT study,” Molecular Catalysis, vol. 515, p. 111891, Oct. 2021, doi: 10.1016/j.mcat.2021.111891.
[122] G. Saracco, “Methane combustion on Mg-doped LaMnO3 perovskite catalysts,” Applied Catalysis B: Environmental, vol. 20, no. 4, pp. 277–288, Apr. 1999, doi: 10.1016/S0926-3373(98)00118-0.
[123] G. Saracco, “Methane combustion on Mg-doped LaCrO3 perovskite catalysts,” Applied Catalysis B: Environmental, vol. 8, no. 2, pp. 229–244, Apr. 1996, doi: 10.1016/0926-3373(95)00084-4.
[124] M. D. Farahani, M. Wolf, T. P.O. Mkhwanazi, M. Claeys, and H. B. Friedrich, “Operando experimental evidence on the central role of oxygen vacancies during methane combustion,” Journal of Catalysis, vol. 390, pp. 184–195, Oct. 2020, doi: 10.1016/j.jcat.2020.07.024.
[125] J. Chen et al., “Mechanistic Understanding of Methane Combustion over Ni/CeO2 : A Combined Experimental and Theoretical Approach,” ACS Catal., vol. 11, no. 15, pp. 9345–9354, Aug. 2021, doi: 10.1021/acscatal.1c01088.
[126] C. Liu et al., “Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane,” Applied Catalysis B: Environmental, vol. 176–177, pp. 542–552, Oct. 2015, doi: 10.1016/j.apcatb.2015.04.042.
[127] H. Stotz, L. Maier, A. Boubnov, A. T. Gremminger, J.-D. Grunwaldt, and O. Deutschmann, “Surface reaction kinetics of methane oxidation over PdO,” Journal of Catalysis, vol. 370, pp. 152–175, Feb. 2019, doi: 10.1016/j.jcat.2018.12.007.
[128] Y. Han et al., “Kinetic and spectroscopic study of methane combustion over α-Mn2O3 nanocrystal catalysts,” Journal of Catalysis, vol. 253, no. 2, pp. 261–268, Jan. 2008, doi: 10.1016/j.jcat.2007.11.010.
[129] A. K. Ladavos and P. J. Pornonis, “Catalytic Combustion of Methane on La,-,Sr,NiO,-~ (x = 0.00-1 S O ) Perovskites prepared via the Nitrate and Citrate Routes,” J. CHEM. SOC. FARADAY TRANS., vol. 88, 1992.
[130] D. L. Trimm and C.-W. Lam, “The combustion of methane on platinum—alumina fibre catalysts—I: Kinetics and mechanism,” Chemical Engineering Science, vol. 35, no. 6, pp. 1405–1413, Jan. 1980, doi: 10.1016/0009-2509(80)85134-7.
[131] F. Zasada, J. Janas, W. Piskorz, M. Gorczyńska, and Z. Sojka, “Total Oxidation of Lean Methane over Cobalt Spinel Nanocubes Controlled by the Self-Adjusted Redox State of the Catalyst: Experimental and Theoretical Account for Interplay between the Langmuir–Hinshelwood and Mars–Van Krevelen Mechanisms,” ACS Catal., vol. 7, no. 4, pp. 2853–2867, Apr. 2017, doi: 10.1021/acscatal.6b03139.
[132] X. Wang et al., “Structural requirements of manganese oxides for methane oxidation: XAS spectroscopy and transition-state studies,” Applied Catalysis B: Environmental, vol. 229, pp. 52–62, Aug. 2018, doi: 10.1016/j.apcatb.2018.02.007.
[133] C. Huang, W. Shan, Z. Lian, Y. Zhang, and H. He, “Recent advances in three-way catalysts of natural gas vehicles,” Catal. Sci. Technol., vol. 10, no. 19, pp. 6407–6419, Oct. 2020, doi: 10.1039/D0CY01320J.
[134] “Automotive Natural Gas Vehicle Market Report 2025.” Accessed: Apr. 08, 2025. [Online]. Available: https://www.researchandmarkets.com/reports/6041612/automotive-natural-gas-vehicle-market-report
[135] M. Shelef and R. W. McCabe, “Twenty-five years after introduction of automotive catalysts: what next?,” Catalysis Today, vol. 62, no. 1, pp. 35–50, Sep. 2000, doi: 10.1016/S0920-5861(00)00407-7.
[136] T. Maillet, J. Barbier, P. Gelin, H. Praliaud, and D. Duprez, “Effects of Pretreatments on the Surface Composition of Alumina-Supported Pd–Rh Catalysts,” Journal of Catalysis, vol. 202, no. 2, pp. 367–378, Sep. 2001, doi: 10.1006/jcat.2001.3268.
[137] P. Granger, Y. Renème, F. Dhainaut, Y. Schuurman, and C. Mirodatos, “NO Adsorption and Reaction on Aged Pd–Rh Natural Gas Vehicle Catalysts: A Combined TAP and Steady-State Kinetic Approach,” Top Catal, vol. 60, no. 3–5, pp. 289–294, Mar. 2017, doi: 10.1007/s11244-016-0613-z.
[138] Y. Zheng, A. Decoster, F. Dhainaut, S. Heyte, M. Marinova, and P. Granger, “Impact of the Pd incorporation method on the kinetics of the CH4/O2 reaction on Natural-Gas-Vehicle model Pd-doped LaMnO3 catalysts,” Journal of Catalysis, vol. 430, p. 115353, Feb. 2024, doi: 10.1016/j.jcat.2024.115353.
[139] X. Liu et al., “Steam Treatment Promotion on the Performance of Pt/CeO2 Three-Way Catalysts for Emission Control of Natural Gas-Fueled Vehicles,” Catalysts, vol. 14, no. 1, p. 17, Dec. 2023, doi: 10.3390/catal14010017.
[140] A. Papavasiliou, A. Tsetsekou, V. Matsouka, M. Konsolakis, I. V. Yentekakis, and N. Boukos, “Synergistic structural and surface promotion of monometallic (Pt) TWCs: Effectiveness and thermal aging tolerance,” Applied Catalysis B: Environmental, p. S0926337311002499, May 2011, doi: 10.1016/j.apcatb.2011.05.030.
[141] D. Kunwar et al., “Investigating anomalous growth of platinum particles during accelerated aging of diesel oxidation catalysts,” Applied Catalysis B: Environmental, vol. 266, p. 118598, Jun. 2020, doi: 10.1016/j.apcatb.2020.118598.
[142] A. Aitbekova et al., “Templated encapsulation of platinum-based catalysts promotes high-temperature stability to 1,100 °C,” Nat. Mater., vol. 21, no. 11, pp. 1290–1297, Nov. 2022, doi: 10.1038/s41563-022-01376-1.
[143] J. Fan et al., “Insights into the promotional effect of alkaline earth metals in Pt-based three-way catalysts for NO reduction,” Journal of Catalysis, vol. 418, pp. 90–99, Feb. 2023, doi: 10.1016/j.jcat.2023.01.009.
[144] X. Wang et al., “A Pt Catalyst with Enhanced Three-Way Catalytic Activity Supported on CeO2 Modified with Al2 O3 for Natural Gas Vehicles,” Ind. Eng. Chem. Res., vol. 64, no. 11, pp. 5854–5863, Mar. 2025, doi: 10.1021/acs.iecr.4c04269.
[145] S. R. Vatcha, “LOW-EMISSION GAS TURBINES USING CATALYTIC COMBUSTION”.
[146] S. Etemad, H. Karim, L. L. Smith, and W. C. Pfefferle, “Advanced technology catalytic combustor for high temperature ground power gas turbine applications,” Catalysis Today, vol. 47, no. 1–4, pp. 305–313, Jan. 1999, doi: 10.1016/S0920-5861(98)00311-3.
[147] T. Griffin, W. Weisenstein, V. Scherer, and M. Fowles, “Palladium-Catalyzed Combustion of Methane: Simulated Gas Turbine Combustion at Atmospheric Pressure”.
[148] A.-K. Jannasch, F. Silversand, M. Berger, D. Dupuis, and E. Tena, “Development of a novel catalytic burner for natural gas combustion for gas stove and cooking plate applications,” Catalysis Today, vol. 117, no. 4, pp. 433–437, Oct. 2006, doi: 10.1016/j.cattod.2006.06.020.
[149] I. Cerri, G. Saracco, F. Geobaldo, and V. Specchia, “Development of a Methane Premixed Catalytic Burner for Household Applications,” Ind. Eng. Chem. Res., vol. 39, no. 1, pp. 24–33, Jan. 2000, doi: 10.1021/ie990425y.
[150] S. R. Vaillant and A. S. Gastec, “Catalytic combustion in a domestic natural gas burner,” Catalysis Today, vol. 47, no. 1–4, pp. 415–420, Jan. 1999, doi: 10.1016/S0920-5861(98)00324-1.
[151] N. Jodeiri, J. P. Mmbaga, L. Wu, S. E. Wanke, and R. E. Hayes, “Modelling a counter-diffusive reactor for methane combustion,” Computers & Chemical Engineering, vol. 39, pp. 47–56, Apr. 2012, doi: 10.1016/j.compchemeng.2011.12.009.
[152] س. م. حسینعلی پور, م. مددالهی, آ. بهروان, م. پروری, “شبیهسازی دوبعدی مشعل تشعشعی کاتالیستی نفوذ متقابل,” مهندسی مکانیک مدرس, vol. 14, no. 5, pp. 83–90, Aug. 2014.
[153] س. م. حسینعلی پور, م. نمازی, آ. بهروان, خ. قدیری, م. مددالهی, “ساخت و بررسی عملکرد لایه تشعشعی کاتالیستی برای احتراق بدون شعله گاز طبیعی در شرایط آب و هوایی مختلف,” مهندسی مکانیک مدرس, vol. 14, no. 9, pp. 57–64, Dec. 2014.
[154] “Catco | Catalytic Heaters, Pipe Heater, Industrial Heater,” Catco. Accessed: Apr. 13, 2025. [Online]. Available: https://catcousa.com/
[155] “Bruest Catalytic Heaters | Flameless Gas Catalytic Heaters.” Accessed: Apr. 13, 2025. [Online]. Available: https://bruestcatalyticheaters.com/
[156] “Thermon (Cata-Dyne),” Thermon. Accessed: Apr. 13, 2025. [Online]. Available: https://thermon.com/
[157] “ETTER Engineering (TITAN-Catalytic),” Etter Engineering Company. Accessed: Apr. 13, 2025. [Online]. Available: //www.etterengineering.com/
[158] “scottcan.” Accessed: Apr. 13, 2025. [Online]. Available: http://www.scottcan.com/
[159] “Trimac Industrial Systems,” Trimac. Accessed: Apr. 13, 2025. [Online]. Available: https://www.trimacsystems.com/catalytic-infrared-heaters/
[160] “Casso-Solar Technologies.” Accessed: Apr. 13, 2025. [Online]. Available: https://www.cassosolartechnologies.com
[161] “Catalytic Industrial Systems (CIS),” Gas Catalytic Infrared Industrial Powder Coating Ovens. Accessed: Apr. 13, 2025. [Online]. Available: https://www.catalyticirovens.com
[162] “Enerco® | Delivering high quality gas products home and away.” Accessed: Apr. 13, 2025. [Online]. Available: https://www.enerco.com/
[163] “Campingaz UAE.” Accessed: Apr. 13, 2025. [Online]. Available: https://campingaz.ae/
[164] “CAMCO.” Accessed: Apr. 13, 2025. [Online]. Available: https://www.camco.net
[165] “Flame King.” Accessed: Apr. 13, 2025. [Online]. Available: https://flameking.com/
[166] “Coleman: Outdoor Camping Gear & Equipment,” Coleman. Accessed: Apr. 13, 2025. [Online]. Available: https://www.coleman.com/
[167] “Kovea,” Kovea. Accessed: Apr. 13, 2025. [Online]. Available: https://www.kovea.com
[168] Y. Chen et al., “A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis,” Nat Energy, vol. 3, no. 12, pp. 1042–1050, Oct. 2018, doi: 10.1038/s41560-018-0262-5.
[169] “Bloom Energy,” Bloom Energy. Accessed: Apr. 13, 2025. [Online]. Available: https://www.bloomenergy.com/
[170] “Cummins.” Accessed: Apr. 13, 2025. [Online]. Available: https://www.cummins.com/
[171] “Ceres Power.” Accessed: Apr. 13, 2025. [Online]. Available: https://www.ceres.tech/
[172] “Mitsubishi Heavy Industries, Ltd.,” Mitsubishi Heavy Industries, Ltd. Accessed: Apr. 13, 2025. [Online]. Available: https://www.mhi.com/
[173] “KYOCERA GROUP,” KYOCERA. Accessed: Apr. 13, 2025. [Online]. Available: https://global.kyocera.com/
[174] “Bosch.” Accessed: Apr. 13, 2025. [Online]. Available: https://www.bosch.com/
[175] “United Technologies Research Center.” Accessed: Apr. 13, 2025. [Online]. Available: https://www.rtx.com/
[176] “FuelCell Energy,” FuellCell Energy. Accessed: Apr. 13, 2025. [Online]. Available: https://www.fuelcellenergy.com
[177] “Fuji Electric Global,” Fuji Electric Global. Accessed: Apr. 13, 2025. [Online]. Available: https://www.fujielectric.com/index.html
[178] “Elcogen | Solid Oxide Fuel Cells and Stacks,” Affordable Green Hydrogen. Accessed: Apr. 13, 2025. [Online]. Available: https://elcogen.com/
[179] “WATT Fuel Cell Corporation,” WATT Fuel Cell. Accessed: Apr. 13, 2025. [Online]. Available: https://wattfuelcell.com/
[180] “Nexceris,” Nexceris. Accessed: Apr. 13, 2025. [Online]. Available: https://nexceris.com/
[181] “Cerpotech,” Ceramic Powder Technologies. Accessed: Apr. 13, 2025. [Online]. Available: https://cerpotech.com/