مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی عملکرد یک موتور ونکل دارای توربوشارژر در ارتفاع بالا به همراه توسعه مدل پیشبینی عملکرد

نویسندگان
دانشگاه صنعتی مالک اشتر، اصفهان
چکیده
در این پژوهش، عملکرد موتور ونکل مزدا 13B مجهز به توربوشارژر در شرایط پروازی ارتفاع بالا مورد بررسی عددی و تجربی قرار گرفته است. با توجه به نبود نرم‌افزارهای اختصاصی برای تحلیل دقیق موتورهای ونکل، ابتدا یک روش معادل‌سازی هندسی و عملکردی برای تبدیل موتور ونکل به یک مدل پیستونی معادل توسعه داده شد تا امکان استفاده از ابزارهای شبیه‌سازی مرسوم فراهم شود. مدل‌ معادل موتور در نرم‌افزار با توجه به شرایط بستر آزمون موتور اصلی شبیه‌سازی می‌گردد که میانگین اختلاف توان بین شبیه‌سازی و نتایج تجربی کمتر از ۵ درصد بوده است. پس از اعتبارسنجی مدل پایه به کمک داده‌های آزمایشگاهی، اثر ارتفاع پروازی بر توان خروجی موتور، در دو حالت تنفس طبیعی و توربوشارژ، در شرایطی که خروجی‌های مدل در زمینه‌هایی که نتایج آزمون برای آن وجود ندارد صورت گرفته است. نتایج مدل‌سازی موتور در ارتفاع نشان می‌دهد که توان موتور در حالت بدون توربوشارژر، در ارتفاع ۱۸۰۰۰ پا به حدود نصف مقدار اولیه در سطح دریا کاهش می‌یابد، در حالی‌که با به‌کارگیری توربوشارژر، توان خروجی موتور تا ارتفاع ۳۰۰۰۰ پا تقریباً ثابت باقی مانده و از افت ناشی از کاهش چگالی هوا جلوگیری می‌شود. به طور کاملا واضحی می‌توان اشاره داشت که در این پژوهش، مدل عددی موتور ونکل با استفاده از مدل‌های موجود برای موتور پیستونی توسعه یافته و با داده‌های آزمایشگاهی اعتبارسنجی شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Investigation of the Performance of a Turbocharged Wankel Engine at High Altitude Along with the Development of a Performance Prediction Model

نویسندگان English

Mehrdad Bazaz zadeh
saeid kheradmand
saber mirzali
Department of Mechanical and Aerospace Engineering, Malek Ashtar University, Isfahan, Iran
چکیده English

In this study, the performance of a turbocharged Mazda 13B Wankel engine under high-altitude flight conditions was investigated through numerical and experimental approaches. Due to the lack of dedicated software for precise analysis of Wankel engines, a geometric and functional equivalence method was first developed to convert the Wankel engine into an equivalent piston engine model, enabling the use of conventional simulation tools. The equivalent model was simulated in the software based on the conditions of the main engine test setup, achieving an average power discrepancy of less than 5% between simulation and experimental results. After validating the baseline model using laboratory data, the effect of flight altitude on engine power output was evaluated for both naturally aspirated and turbocharged configurations, particularly in scenarios where experimental test results were unavailable. The modeling results indicate that, without a turbocharger, the engine power at 18,000 ft drops to approximately half its sea-level value, whereas with a turbocharger, the engine power remains nearly constant up to 30,000 ft, mitigating the power loss due to reduced air density. It can be clearly stated that in this research, the numerical model of the Wankel engine has been developed based on existing piston engine models and validated against experimental data

کلیدواژه‌ها English

Improving Ceiling Flight Altitude
Turbocharger
Mazda 13B Wankel Engine
One-Dimensional Simulation
Experimental Altitude Testing
[1] D. J. Bents, Ted Mockler, Jaime Maldonado, James L. Harp Jr, Joseph F. King, and Paul , and C. Schmitz, “Propulsion System for Very High Altitude Subsonic Unmanned Aircraft,” SAE transactions, 1998.
[2] M. K. E. a. E. D. Klomp, “An Evaluation of the Potential Performance Gain from Leakage Reduction in Rotary Engines,” SAE Transactions, 1973.
[3] K. J. Danieli GA, Heywood JB, “Experimental and Theoretical Analysis of Wankel Engine Performance,” SAE Technical Paper, 1978.
[4] C. J. Teng Su, Shuofeng Wang, Xiaoyu Cong, Lei Shi, “Improving performance of a gasoline Wankel rotary by hydrogen enrichment at different conditions,” Energy Conversion and Management, 2018.
[5] K. Y. a. T. Kuroda, “Toyo kogyp's research and Development on Major Rotary Engine Problems,” SAE International.
[6] O. A. Kutlar, M. Üngör, and Ö. Cihan, “Design and experimental testing of a novel skip-cycle mechanism for Wankel engine,” Energy Conversion and Management, vol. 325, pp. 119410, 2025.
[7] F. C. Danieli GA, Heywood JB, Keck JC, “Predicting the Emissions and Performance Characteristics of a Wankel Engine,” SAE Transactions, 1974.
[8] B. Beyfuss, Flicker, L., Gotthard, T., Hofmann, P, “Evaluation of Spark-Ignited Kerosene Operation in a Wankel Rotary Engine,” SAE Technical Paper, 2021.
[9] X. Y. Wei Chen, Qingsong Zuo, Hui Wang, Dezhong Ning, Chuanfu Kou, Yi Zhang, Guohui Zhu “Combustion characteristics and performance analysis of a heavy-fuel rotary engine by designing fuel injection position,” Applied Thermal Engineering, 2024.
[10] F. V. B. a. W. A. SIRIGNANO, “Theoretical Analysis of Wankel Engine Combustion,” Combustion Science and Technology, 1973.
[11] T. Norman, “A performance model of a spark ignition Wankel engine including the effects of crevice volumes, gas leakage, and heat transfer,” Doctoral dissertation, Massachusetts Institute of Technology, 1983.
[12] M. W. F Grasso, FV Bracco, J Abraham, “Three-dimensional computations of flows in a stratified-charge rotary engine,” SAE Transactions, 1987.
[13] Y. D. Zhenghao Yang, Guangyu Jia b, Xu Gao, Guangyu He, Zhengbiao Wang “Effect of multi-hole passive jet ignition on thermodynamic and combustion characteristics of hydrogen-doping elliptical rotary engine in high-altitude environment,” Energy, 2025.
[14] M. Drbal, “METHOD OF ROTARY ENGINE PERFORMANCE PREDICTION,” Scientific Journal of Silesian University of Technology, 2020.
[15] V. B. Leonid Tartakovsky, Marcel Gutman and Mark Veinblat, “Simulation of Wankel Engine Performance Using Commercial Software for Piston Engines,” SAE International, 2012.
[16] M. Peden, Turner, M., Turner, J., and Bailey, N, “Comparison of 1-D Modelling Approaches for Wankel Engine Performance Simulation and Initial Study of the Direct Injection Limitations,” SAE Technical Paper, 2018.
[17] Ł. G. M Wendeker, K PIETRYKOWSKI, P MAGRYTA, “Phenomenological model of a Wankel engine,” Silniki Spalinowe, 2011.
[18] A. S. Merve Kucuk, Ramazan Sener, “Combustion characteristics and performance of a Wankel engine for unmanned aerial vehicles at various altitudes,” Fuel, 2024.
[19] M. Kucuk, R. Sener, and A. Surmen, “Effectiveness of hydrogen enrichment strategy for Wankel engines in unmanned aerial vehicle applications at various altitudes,” International Journal of Hydrogen Energy, vol. 52, pp. 1534-1549, 2024.
[20] C. Shi, S. Chai, L. Di et al., “Combined experimental-numerical analysis of hydrogen as a combustion enhancer applied to Wankel engine,” Energy, vol. 263, pp. 125896, 2023.
[21] E. W. R. M. J. J. J. S. L. T. C. M. T. V. D. W. Vos, “Design and Initial Testing of the Perseus A Robotic Aircraft,” InAircraft Engineering, Technology, and Operations Congress, 1995.
[22] K. S. Agha Seyed Mirzabozorg M, Roueini A, “A C-programming code for selecting the optimum turbocharged propulsion system for UAV’s,” Modares Mechanical Engineering, 2018.
[23] C. J. Hao Meng, Hanlin Li, Jinxin Yang, Shuofeng Wang, “Insights into syngas-fueled Wankel rotary engine performance from varied CO/H2 ratio,” International Journal of Hydrogen Energy, 2023.
[24] J. P. Peter Otchere, Baowei Fan, Wei Chen, Yao Lu, “Recent Studies of Fuels Used in Wankel Rotary Engines,” Journal of Energy Resources Technology, 2021.
[25] H. Zhang, L. Shi, K. Deng et al., “Experiment investigation on the performance and regulation rule of two-stage turbocharged diesel engine for various altitudes operation,” Energy, vol. 192, pp. 116653, 2020.
[26] G. Yewale, Tapkire, A., Radhakrishna, D., Shejwal, P. et al, “Endurance Testing for Wankel Rotary Engine,” SAE International, 2017.
[27] G. T. Vorraro, J.;Akehurst, S., “Testing of a Modern Wankel Rotary Engine - Part III: Firing Condition Analysis,” SAE International, 2022.
[28] L. T. Y Fass, “Limitations of Two-Stage Turbocharging at High Flight Altitudes,” SAE International, 2018.
[29] F. O. H Mansouri, “Performance prediction of aircraft gasoline turbocharged engine at high altitudes,” Applied Thermal Engineering, 2019.
[30] S. K. Mohsen Aghaseyedmirzabozorg, mohammadreza khodaparast “A simplified laboratory set up for testing the behavior of a turbocharged engine in a high-altitude air engine,” Aerospace Knowledge and Technology Journal, 2022.
[31] M. A. Ö.Cihan, O.A.Kutlar, “EXPERIMENTAL AND 1-D MODEL ANALYSIS OF WANKEL ENGINE AT PART LOAD,” International Journal of Advances on Automotive and Technology, 2018.
[32] W. Mitianiec, “Modelling and simulation of working processes in Wankel engine with direct hydrogen injection system,” Combustion Engines, 2015.
[33] K. Yamamoto, Rotary Engine, Tokyo: Sankaido, 1981.
[34] R. F. Ansdale, and D. J. Lockley, The Wankel RC Engine: Iliffe London, 1968.
[35] G. Woschni, A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine, 0148-7191, SAE Technical paper, 1967.
[36] M. E. ZDENĚK ŽÁK, MICHAL TAKÁTS, JAN MACEK, “IN-CYLINDER HEAT TRANSFER MODELLING,” MECCA Journal of Middle European Construction and Design of Cars,, 2016.