مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی قالب تزریق مستقیم زیره کفش با استفاده از پرینتر سه بعدی

نویسندگان
دانشگاه صنعتی شریف
چکیده
این پژوهش به بررسی قابلیت ساخت قالب‌های تزریق مستقیم زیره کفش با استفاده از فناوری چاپگر سه‌بعدی و بهره‌گیری از ساختارهای فرامواد می‌پردازد. هدف اصلی مطالعه، ارزیابی تأثیر نوع الگوی شبکه‌ای (شامل شش ضلعی، مستطیلی و ساده) و ضخامت دیواره‌های پوسته (0.8، 1 و 1.2 میلی‌متر) بر خواص مکانیکی، به ویژه استحکام و انرژی جذب نمونه‌های تقویت‌شده با رزین اپوکسی است. در ابتدا، نمونه‌ای از قالب زیره کفش با استفاده از پلیمر ABS و رزین چاپ شد که به دلیل عدم استحکام کافی، نیاز به تقویت داشت. برای رفع این چالش، نمونه‌هایی استاندارد طراحی و چاپ شدند و سپس داخل آن‌ها و سطح خارجی پوسته با رزین اپوکسی پر گردید. الگوهای فرامواد (شش ضلعی و مستطیلی) بر روی دیواره‌های خارجی پوسته اعمال شدند تا استحکام و پایداری ساختاری افزایش یابد. نمونه‌های نهایی تحت آزمایش‌های ضربه و خمش سه‌نقطه قرار گرفتند. نتایج نشان داد که استفاده از ساختارهای شبکه‌ای و بهینه‌سازی ضخامت دیواره، به طور قابل توجهی خواص مکانیکی را بهبود می‌بخشد. به عنوان مثال، در آزمایش ضربه، نمونه‌های دارای ساختار شش ضلعی با ضخامت 1 میلی‌متر، به طور میانگین 1.46 ژول انرژی جذب کردند، در حالی که نمونه‌های ساده و مستطیلی به ترتیب 1.21 و 1.01 ژول جذب انرژی داشتند. همچنین، در آزمایش خمش سه‌نقطه، ساختار مستطیلی بالاترین استحکام خمشی (1129.1 مگاپاسکال) را نشان داد که بیانگر تأثیر چشمگیر فرامواد در بهبود خواص مکانیکی است. این یافته‌ها حاکی از آن است که با بهره‌گیری از طراحی هوشمندانه فرامواد، می‌توان ضمن کاهش مصرف مواد و زمان تولید، به قطعاتی با استحکام و کارایی بالا دست یافت

موضوعات


عنوان مقاله English

Design of Direct Injection Mold for Shoe Soles by Additive Manufacturing Technology

نویسندگان English

kaivan mohammadi
Hossain Minaparvar
Sharif University of Technology
چکیده English

This study investigates the feasibility of fabricating direct-injection shoe‐sole molds using three‐dimensional printer technology, incorporating metamaterial structures. The primary objective is to evaluate the influence of lattice pattern type (including hexagonal, rectangular, and simple grids) and shell wall thickness (0.8, 1.0, and 1.2 mm) on the mechanical properties—specifically strength and energy absorption—of specimens reinforced with epoxy resin. Initially, a prototype shoe‐sole mold was printed from ABS polymer and resin; however, due to insufficient intrinsic strength, reinforcement was required. To address this, standard test specimens were designed and printed, after which their inner cavities and the outer surface of the shell were filled with epoxy resin. Metamaterial patterns (hexagonal and rectangular) were applied to the exterior walls of the shell to enhance structural strength and stability. The final specimens were subjected to impact testing and three‐point bending tests. The results demonstrated that the incorporation of lattice structures and the optimization of wall thickness significantly improved the mechanical properties. For instance, in the impact test, specimens featuring a hexagonal lattice with a 1 mm wall thickness absorbed an average of 1.46 J of energy, whereas simple and rectangular specimens absorbed 1.21 J and 1.01 J, respectively. Additionally, in the three‐point bending test, the rectangular‐lattice specimens exhibited the highest flexural strength (1129.1 MPa), indicating a pronounced effect of metamaterials in enhancing mechanical performance. These findings suggest that, by employing intelligent metamaterial design, it is possible to achieve components with high strength and performance while reducing material usage and production time

[1] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges”. Composites Part B: Engineering, 143, 172–196.
[2] Bishop, C., Williams, R., & Thompson, J. (2019). “Limitations of traditional shoe sole manufacturing: A review. In Footwear Design and Engineering” (pp. 89-104). Springer International Publishing.
[3] Spahiu, T., Piperi, E., Ehrmann, A., Almeida, H.A. (2019), “3D Printing: An Innovative Technology for Customised Shoe Manufacturing”, International Conference of Progress in Digital and Physical Manufacturing, Springer, Cham.
[4] Gibson, I., Rosen, D., & Stucker, B. (2015). “Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing” (2nd ed.). Springer.
[5] Wang, Y., Zhang, L., & Li, J. (2020). “Customized 3D-printed insoles for diabetic patients: A biomechanical study”. Journal of Biomechanics, 112, 110045.
[6] Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). “Mechanical characterization of 3D-printed polymers”. Additive Manufacturing, 23, 374-388.
[7] MIT Research Team. (2021). “Customizable Shoe Sole Design Using 3D Printing”. Journal of Advanced Manufacturing , 12(4), 567-582.
[8] Zhang, L., Wang, Y., & Liu, X. (2021). “Cost and Time Efficiency of 3D Printing in Footwear Manufacturing”. International Journal of Production Research , 59(8), 2345-2360.
[9] Telfer, S., & Woodburn, J. (2020). “The use of 3D printing for custom orthotics”. Prosthetics and Orthotics International , 44(2), 89-97.
[10] Stratasys Ltd, (2021), “Stratasys Partners With ECCO to Innovate Footwear Manufacturing Using 3D Printing Technology”
[11] شکوه دزیانیان، محمد آزادی، (1400)، مروری بر انواع فراماده، روش ساخت افزایشی و کاربرد آن در صنعت خودرو، نشریه علمی انجمن مهندسان مکانیک ایران، 1605-9719.
[12] محمد آزادی، (1400)، مروری بر کاربردها، فرآیندهای طراحی و ساخت فرامواد یا استفاده از فنون تولید افزایشی و چاپگر های سه بعدی، فصلنامه علمی پژوهش و توسعه فناوری پلیمر ایران، 6-2-22.
[13] ریحانه مکارم، حسین شریفی، (1402)، مروری بر چگونگی روش تولید ساخت افزایشی فرامواد، پنجمین کنگره بین المللی مهندسی، تکنولوژی و علوم کاربردی، آوکلند، نیوزلند.
[14] Berger, J. B., Wadley, H. N. G., & McMeeking, R. M. (2017). “Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness”. Nature, 543(7646), 533–537.
[15] Zheng, X., Smith, W., Jackson, J., Moran, B., Cui, H., Chen, D., ... & Hopkins, J. B. (2021). “Multiscale metallic metamaterials”. Nature Materials, 20(4), 637–644.
[16] Wang, Y., Chen, X., & Zhang, L. (2020). “Mechanical properties of lattice structures in additive manufacturing”. Materials & Design , 185, 108267.
[17] Wang, Y., Liu, J., Zhang, X., & Li, B. (2023). Mechanical performance comparison of lattice structures fabricated via DLP printing. Frontiers in Mechanical Engineering, 9, 1204893.
[18] Bieler, M., & Weinberg, D. (2024). On the mechanical efficiency of 3D-printed metamaterial structures under dynamic loading. arXiv preprint, arXiv:2412.06547.