مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

رفتار دینامیکی کامپوزیت‌های سه‌بعدی ساچمه‌زنی شده با هسته فوم ترکیبی و تقویت‌شده با نانوذرات تحت ضربه سرعت بالا

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران
2 گروه مهندسی نساجی ، دانشگاه آزاد اسلامی واحد تهران جنوب ، تهرا ن، ایران
چکیده
در این پژوهش، تأثیر فرآیند ساچمهزنی بر رفتار مکانیکی کامپوزیتهای سهبعدی فلز-پلیمر-فلز تحت ضربههای سرعت بالا بررسی شد. هدف، ارزیابی تنشهای پسماند فشاری ناشی از ساچمهزنی در بهبود مقاومت مکانیکی، افزایش حد بالستیک، کاهش نرخ رشد ترکها و افزایش جذب انرژی بود. نمونهها شامل ۰%، ۳%، 5% و 7% نانورس در دو حالت با ساچمهزنی و بدون ساچمهزنی مورد آزمایش قرار گرفتندآزمونهای ضربه سرعت بالا با تفنگ گاز هلیومی در سرعت ۲۳۵ متر بر ثانیه انجام شد. نتایج نشان داد ساچمهزنی قطر برخورد را کاهش داده، چقرمگی سطحی را افزایش داده و نرخ رشد ترکهای شعاعی را کاهش میدهدنمونههای 5نانورس با ساچمهزنی بهترین عملکرد را نشان دادند، کمترین قطر محل برخورد، بالاترین حد بالستیک و بیشترین انرژی جذبشده را ثبت کردند. در مقابل، افزایش 7نانورس بدون ساچمهزنی باعث تمرکز تنش، کاهش چقرمگی سطحی و افزایش نرخ رشد ترکها شدتحلیل مکانیزمهای شکست نشان داد که در نمونههای بدون ساچمهزنی، ترکهای شعاعی گسترده و نامنظم بودند، درحالیکه در نمونههای ساچمهزنیشده، ترکها کوتاهتر و متراکمتر بودند. در نتیجه، ساچمهزنی همراه با 5% نانورس بهعنوان راهکاری مؤثر برای بهبود مقاومت کامپوزیتهای چندلایهای در برابر ضربههای سرعت بالا پیشنهاد میشود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Dynamic Behavior of Shot-Peened 3D Composites with Hybrid Foam Core and Nanoparticle Reinforcement under High-Velocity Impact

نویسندگان English

Reza Hajizadeh Asl 1
Mehdi Yarmohammad Tooski 1
mohsen Jabbari 1
laleh Maleknia 2
1 Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran Iran
2 Department of Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran Iran
چکیده English

This research delves into the influence of shot peening on the mechanical behavior of three-dimensional metal-polymer-metal composites when subjected to high-velocity impacts. The primary objective was to assess how the compressive residual stresses induced by shot peening contribute to enhancing the mechanical resistance, increasing the ballistic limit, reducing crack propagation rates, and augmenting energy absorption capabilities of these composites. We prepared specimens with varying nanoclay content (0%, 3%, 5%, and 7%) and tested them in two distinct states: shot-peened and unpeened. High-velocity impact tests were executed using a helium gas gun at a consistent impact velocity of 235 meters per second. The results unequivocally demonstrated that shot peening significantly reduced the impact crater diameter, enhanced surface toughness, and mitigated the growth rate of radial cracks. Notably, the 5% nanoclay specimens that underwent shot peening exhibited the most superior performance, recording the smallest impact locus diameter, the highest ballistic limit, and the maximum absorbed energy. Conversely, increasing the nanoclay content to 7% in unpeened specimens led to stress concentration, a reduction in surface toughness, and an accelerated radial crack growth rate. Analysis of the fracture mechanisms revealed that unpeened specimens displayed extensive and irregular radial cracks. In contrast, the shot-peened specimens exhibited shorter and more densified crack networks. Consequently, we propose that shot peening, when combined with a 5% nanoclay concentration, serves as an effective strategy for improving the impact resistance of multi-layered composites against high-velocity projectile threats

کلیدواژه‌ها English

High-Velocity Impact
Ballistic Limit
NanoClay
3D FMLs
Shot Peening
1] Saleh M, Yarmohammad Tooski M, Khorshidvand AR, Javadi M. Experimental study of the effect of carbon nanotubes and nano-silica on the impact resistance of FML sheets under low velocity Impact. Functional Composites and Structures. 2025 Jul;7(3):35001. doi: http://doi.org/10.1088/2631-6331/ade75a.
[2] Asl RH, Tooski MY, Jabbari M, Maleknia L. Dynamic response to high-velocity impact on 3D fiber metal laminates (3D FMLs) incorporating a nano-reinforced syntactic foam core. Polymer Composites. 2025. doi: http://doi.org/10.1002/pc.29926.
[3] Fereshteh-Saniee F, Ghorbanhosseini S, Yaghoubi S. A profound study of damage behavior for Al 2024-T3 alloy worksheet produced by constrained groove pressing in the superior practical condition. Scientific Reports. 2024;14(1):1–12. doi: http://doi.org/10.1038/s41598-024-68767-z.
[4] Agnieszka S, Kazimierz Z, Krzysztof C, Jakub M. Study on the surface layer properties of magnesium alloys after impulse shot peening. International Journal of Advanced Manufacturing Technology. 2024:191–204. doi: http://doi.org/10.1007/s00170-024-14099-1.
[5] Sun J, et al. High-velocity impact resistance and energy absorption behavior of Carbon-Kevlar hybrid composite laminates. Polymer Composites. 2024;45(1):847–861, doi: http://doi.org/10.1002/pc.27820.
[6] Taherzadeh-Fard A, Khodadadi A, Liaghat G, Yao XF, Mehrizi MAZ. Mechanical properties and energy absorption capacity of chopped fiber reinforced natural rubber. Composites Part C: Open Access. 2022 Mar;7:100237. doi: http://doi.org/10.1016/j.jcomc.2022.100237.
[7] Segurado E, Belzunce FJ, Fernández-Pariente I. Effects of low intensity shot peening treatments applied with different types of shots on the fatigue performance of a high-strength steel. Surface and Coatings Technology. 2018;340:25–35. doi: http://doi.org/10.1016/j.surfcoat.2018.02.033.
[8] Gopi R, Saravanan I, Devaraju A, Loganathan GB. Investigation of shot peening process on stainless steel and its effects for tribological applications. Materials Today: Proceedings. 2020;22:580–584. doi: http://doi.org/10.1016/j.matpr.2019.08.215.
[9] Ahmadi H, Liaghat G, Charandabi SC. High velocity impact on composite sandwich panels with nano-reinforced syntactic foam core. Thin-Walled Structures. 2020;148:106599, doi: http://doi.org/10.1016/j.tws.2020.106599.
[10] Zhang J, Ju S, Jiang D, Peng HX. Reducing dispersity of mechanical properties of carbon fiber/epoxy composites by introducing multi-walled carbon nanotubes. Composites Part B: Engineering. 2013;54:371–376, doi: http://doi.org/10.1016/j.compositesb.2013.06.035.
[11] Hassan ASM, Ghasemi BY. Metallic nanoparticles in polymer composites: Impact performance and structural integrity under dynamic loading. International Journal of Impact Engineering. 2023;170:103951, doi: http://doi.org/10.1016/j.ijimpeng.2022.104365.
[12] Wei Q, Yang D, Pan Z. Numerical study on the effects of oblique impact on the ballistic behavior of 3D angle interlock woven fabric. International Journal of Damage Mechanics. 2023;32(9):1099–1121, doi: http://doi.org/10.1177/10567895231187672.
[13] Praveen SK, Koteswara Rao S, Damodaram R. Numerical and experimental investigations on the effect of target thickness and solution treatment on the ballistic behaviour of AA7075 thick plates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2022;236(7):3530–3545. doi: http://doi.org/10.1177/09544062211038981.
[14] Soyama H. Comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening, water jet peening, shot peening and laser peening. Journal of Materials Processing Technology. 2019;269:65–78. doi: http://doi.org/10.1016/j.jmatprotec.2019.01.030.
[15] Serubibi A, et al. Fibre-metal laminate structures: High-velocity impact, penetration, and blast loading – A review. Composites Part A: Applied Science and Manufacturing. 2023;173:107674. doi: http://doi.org/10.1016/j.compositesa.2023.107674.
[16] Heimbs S, Wagner T, Viana Lozoya JT, Hoenisch B, Franke F. Comparison of impact behaviour of glass, carbon and Dyneema composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2019;233(3):951–966. doi: http://doi.org/10.1177/0954406218764509.
[17] Tavakol MR. Effect of graphene nanoparticles on the strength of sandwich structure inspired by dragonfly wings under low-velocity impact. Polymer Composites. 2021:1–16. doi: http://doi.org/10.1002/pc.26219.
[18] Shahjouei S, Barati MR, Tooski MY. High Velocity Impact Response and Damage Mechanism of an Aluminium/Glass-Carbon Fiber/Epoxy Composite Plate Reinforced with Graphene Nano-plates. Fibers and Polymers. 2021;22(2):480–488. doi: http://doi.org/10.1007/s12221-021-0105-z.
[19] Li X, Zhang X, Guo Y, Shim VPW, Yang J, Chai GB. Influence of fiber type on the impact response of titanium-based fiber-metal laminates. International Journal of Impact Engineering. 2018;114:32–42, doi: http://doi.org/10.1016/j.ijimpeng.2017.11.009.
[20] Wu J, Liu H, Wei P, Lin Q, Zhou S. Effect of shot peening coverage on residual stress and surface roughness of 18CrNiMo7-6 steel. International Journal of Mechanical Sciences. 2020;183. doi: http://doi.org/10.1016/j.ijmecsci.2020.105785.
[21] Soyama H, Chighizola CR, Hill MR. Effect of compressive residual stress introduced by cavitation peening and shot peening on the improvement of fatigue strength of stainless steel. Journal of Materials Processing Technology. 2021;288:116877. doi: http://doi.org/10.1016/j.jmatprotec.2020.116877.
[22] Fu Y, Yao X. A review on manufacturing defects and their detection of fiber reinforced resin matrix composites. Composites Part C: Open Access. 2022 Jul;8:100276. doi: http://doi.org/10.1016/j.jcomc.2022.100276.
[23] Zarei H, Shahnazar P, Meskini M, Sarkhosh R. Ballistic performance analysis of ultra high molecular weight polyethylene (UHMWPE) composite. Modares Mechanical Engineering. 2022 Apr 10;22(5):356-5. doi: http://doi.org/10.52547/mme.22.5.347.
[24] Gupta N, Priya S, Islam R, Ricci W. Characterization of mechanical and electrical properties of epoxy-glass microballoon syntactic composites. Ferroelectrics. 2006;345(1):1–12, doi: http://doi.org/10.1080/00150190601018002.
[25] Gupta N, Ye R, Porfiri M. Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Composites Part B: Engineering. 2010;41(3):236–245, doi: http://doi.org/10.1016/j.compositesb.2009.10.007.
[26] Ebrahimnezhad-Khaljiri H, Eslami-Farsani R, Talebi S. Investigating the High Velocity Impact Behavior of the Laminated Composites of Aluminum/Jute Fibers- Epoxy Containing Nanoclay Particles. Fibers and Polymers. 2020;21(11):2607–2613. doi: http://doi.org/10.1007/s12221-020-1209-6