مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی ریزساختار و خواص مکانیکی اتصال غیرهمجنس میان سوپرآلیاژ IN738 و فولاد 17-4 PH به روش لیزر Nd:YAG پالسی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مکانیک، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 گروه مهندسی مکانیک، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
چکیده
این پژوهش به بررسی جوشکاری لیزر پالسی Nd:YAG برای اتصال ناهمجنس سوپرآلیاژ پایه نیکل IN738 به فولاد زنگ‌نزن رسوب‌سخت‌شونده 17-4 PH می‌پردازد. هدف اصلی این مطالعه، بررسی تأثیر پارامترهای فرآیند جوشکاری بر خواص مکانیکی و ریزساختاری اتصال می­باشد. تصاویر میکروسکوپ الکترونی(SEM) ، نشان داد که در سوپرآلیاژ IN738، به دلیل ظرفیت گرمایی بالاتر و هدایت حرارتی کمتر، رشد سلولی به دندریت‌های ستونی هم‌محور تبدیل گردید. در مقابل، در فولاد زنگ‌نزن 17-4 PH ، شیب دمایی بالا سبب رشد صفحه‌ای و تشکیل دانه‌های ریز با ساختار ستونی شد. افزایش فرکانس و مدت زمان پالس، افزایش ابعاد حوضچه جوش و کاهش طول ترک­­های انجمادی و ترک در ناحیه متأثر از حرارت (HAZ)، را در پی داشت. افزایش سرعت جوش­کاری، ابعاد حوضچه جوش را کاهش داد. با افزایش سرعت جوشکاری تا 3/8 میلی­متر بر ثانیه، طول ترک­های انجمادی و  ترک در ناحیه (HAZ)، به­ترتیب در حدود 92% و 83% کاهش یافت و با ادامه روند افزایش سرعت جوشکاری تا 13 میلی­متر بر ثانیه، طول ترک­ در ناحیه (HAZ)، افزایش چشمگیری نشان داد. نتایج نشان داد، بر خلاف سرعت جوشکاری، افزایش فرکانس و مدت زمان پالس، افزایش میکروسختی نمونه­ها را به دنبال داشته است.  نتایج آزمون پانچ کوچک (SPT) نشان داد، نمونه‌های حاوی دانه‌های ریز هم‌محور با توزیع یکنواخت فازهای رسوبی (γ′  و کاربیدهای MC)، بالاترین استحکام و چقرمگی را دارند. این یافته‌ها می‌توانند مبنای طراحی فرآیندهای تعمیر و اتصال مؤثر در بخش انرژی و صنایع هوافضا قرار گیرند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of Microstructural and Mechanical Properties Dissimilar Joint Between IN738 Superalloy and 17-4 PH Steel Using Pulsed Nd:YAG Laser Welding

نویسندگان English

masoud mehrpourian 1
Ehsan Shakouri 2
payam saraeian 2
1 Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
چکیده English

This study investigates pulsed Nd:YAG laser welding for dissimilar joining of nickel-based superalloy IN738 and precipitation-hardened stainless steel 17-4 PH. The main objective of this study is to investigate the effect of welding process parameters on the mechanical and microstructural properties of the joint. Scanning electron microscopy (SEM) revealed that in IN738 superalloy due to its higher heat capacity and lower thermal conductivity cellular growth transitioned into columnar coaxial dendrites. In contrast, the steep thermal gradient in 17-4 PH stainless steel promoted planar growth, forming fine grains with a columnar structure. Increasing pulse frequency and duration enlarged the weld pool dimensions while reducing Length of solidification cracks and heat-affected zone (HAZ) cracking. Higher welding speeds decreased weld pool size; at 8.3 mm/s, solidification and HAZ crack lengths were reduced by 92% and 83%, respectively. However, further increases in welding speed (up to 13 mm/s) significantly intensified HAZ cracking. The results showed that, unlike the welding speed, increasing the frequency and pulse duration resulted in an increase in the microhardness of the samples. Small punch test (SPT) results demonstrated that samples with fine, coaxial grains and uniform precipitation phases (γ′ and MC carbides) exhibited the highest strength and toughness. These findings provide a foundation for designing effective repair and joining processes in energy and aerospace applications. 

کلیدواژه‌ها English

Pulsed Laser Welding
Dissimilar Joint
IN738 superalloy
17-4PH stainless steel
Microstructural Characterization
[1]           S. Zhu, Y. Li, J. Yan, and C. Zhang, "Recent Advances in Cooling Technology for the Leading Edge of Gas Turbine Blades," Energies, vol. 18, no. 3, p. 540, 2025. DOI: http://doi.org/10.3390/en18030540.
[2]           J. Błachnio, J. Spychała, and D. Zasada, "Analysis of structural changes in a gas turbine blade as a result of high temperature and stress," Engineering Failure Analysis, vol. 127, p. 105554, 2021. DOI: http://doi.org/10.1016/j.engfailanal.2021.105554.
[3]           T. S. Chowdhury, F. T. Mohsin, M. M. Tonni, M. N. H. Mita, and M. M. Ehsan, "A critical review on gas turbine cooling performance and failure analysis of turbine blades," International journal of thermofluids, vol. 18, p. 100329, 2023. DOI: http://doi.org/10.1016/j.ijft.2023.100329.
[4]           S. Rani, A. K. Agrawal, and V. Rastogi, "Failure analysis of a first stage IN738 gas turbine blade tip cracking in a thermal power plant," Case studies in engineering failure analysis, vol. 8, pp. 1-10, 2017. DOI: http://doi.org/10.1016/j.csefa.2017.01.001.
[5]           Y. Hu et al., "High temperature oxidation behavior of IN738LC alloy formed by selective laser melting," Journal of Materials Science, vol. 57, no. 25, pp. 11983-11996, 2022. DOI: http://doi.org/10.1007/s10853-022-07245-y.
[6]           J. Jia, Y. Zhang, Y. Tao, T. Yan, and H. Ji, "Effects of Solution Temperature on Tensile Properties of a High γ′ Volume Fraction P/M Superalloy," Materials, vol. 15, no. 16, p. 5528, 2022. DOI: http://doi.org/10.3390/ma15165528.
[7]           B.-H. Kim, B.-O. Kong, Y.-K. Joo, I.-S. Son, H.-U. Hong, and J.-H. Lee, "The influence of γ'morphology and size on stress rupture properties in Ni-base superalloy IN738LC," Available at SSRN 4689489, 2024.
[8]           L. Huang, Y. Cao, H. Zhao, Y. Li, Y. Wang, and L. Wei, "Effect of process parameters on density and mechanical behaviour of a selective laser melted 17-4PH stainless steel alloy," Open Physics, vol. 20, no. 1, pp. 66-77, 2022. DOI: http://doi.org/10.1515/phys-2022-0008.
[9]           N. Yurioka and Y. Horii, "Recent developments in repair welding technologies in Japan," Science and Technology of Welding and Joining, vol. 11, no. 3, pp. 255-264, 2006. DOI: http://doi.org/10.1179/174328406X102105.
[10]        M. Taheri, A. Davar, M. H. Beni, J. E. Jam, M. R. Zamani, and A. Alizadeh, "The impact toughness of Nd: YAG laser-welded GTD-111 superalloy joints," Journal of Materials Engineering and Performance, vol. 32, no. 1, pp. 232-242, 2023. DOI: http://doi.org/10.1007/s11665-022-07090-y.
[11]        T. Boellinghaus, J. C. Lippold, and C. E. Cross, Cracking phenomena in welds IV. Springer, 2016. DOI: http://doi.org/10.1007/978-3-319-28434-7.
[12]        J. Andersson, "Review of weldability of precipitation hardening Ni-and Fe-Ni-based superalloys," in Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, 2018: Springer, pp. 899-916. DOI: http://doi.org/10.1007/978-3-319-89480-5_60.
[13]        S. Katayama, Fundamentals and details of laser welding. Springer, 2020. DOI: http://doi.org/10.1007/978-981-15-7933-2.
[14]        N. Taheri, H. Naffakh-Moosavy, and F. M. Ghaini, "A new procedure for refurbishment of power plant Superalloy 617 by pulsed Nd: YAG laser process," Optics & Laser Technology, vol. 91, pp. 71-79, 2017. DOI: http://doi.org/10.1016/j.optlastech.2017.01.002.
[15]        M. Chludzinski, R. E. Dos Santos, C. Churiaque, M. Ortega-Iguña, and J. M. Sánchez-Amaya, "Pulsed laser welding applied to metallic materials—A material approach," Metals, vol. 11, no. 4, p. 640, 2021. DOI: http://doi.org/10.3390/met11040640.
[16]        M. Chludzinski, R. E. Dos Santos, M. Ortega-Iguña, C. Churiaque, M. Porrúa-Lara, and J. M. Sánchez-Amaya, "Low-energy pulsed-laser welding as a root pass in a GMAW joint: an investigation on the microstructure and mechanical properties," Materials, vol. 15, no. 21, p. 7741, 2022. DOI: http://doi.org/10.3390/ma15217741.
[17]        R. Donnini, A. Varone, A. Palombi, S. Spiller, P. Ferro, and G. Angella, "High Energy Density Welding of Ni-Based Superalloys: An Overview," Metals (2075-4701), vol. 15, no. 1, 2025. DOI: http://doi.org/10.3390/met15010030.
[18]        M. Taheri, S. F. Kashani-Bozorg, V. V. Ramalingam, B. Babaei, and A. Halvaee, "Effect of Nd: YAG pulsed-laser welding parameters on melting rate of GTD-111 superalloy joint," Journal of Materials Engineering and Performance, vol. 30, no. 12, pp. 9108-9117, 2021. DOI: http://doi.org/10.1007/s11665-021-06099-z.
[19]        A. Faye, Y. Balcaen, L. Lacroix, and J. Alexis, "Effects of welding parameters on the microstructure and mechanical properties of the AA6061 aluminium alloy joined by a Yb: YAG laser beam," Journal of Advanced Joining Processes, vol. 3, p. 100047, 2021. DOI: http://doi.org/10.1016/j.jajp.2021.100047.
[20]        N. Ahmadi, H. Naffakh-Moosavy, S. M. M. Hadavi, and F. Bagheri, "The effect of Nd: YAG laser parameters on the microstructure, hot cracking susceptibility and elemental evaporation of surface melted AZ80 magnesium-based alloy," Journal of Materials Research and Technology, vol. 27, pp. 2459-2474, 2023. DOI: http://doi.org/10.1016/j.jmrt.2023.04.028.
[21]        X. Xin, W. Xinyong, and L. Juan, "Hot-cracking susceptibility and shear fracture behavior of dissimilar Ti6Al4V/AA6060 alloys in pulsed Nd: YAG laser welding," Chinese Journal of Aeronautics, vol. 34, no. 4, pp. 375-386, 2021. DOI: http://doi.org/pii/S1000936120305604.
[22]        M. Torkamany, S. Tahamtan, and J. Sabbaghzadeh, "Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd: YAG pulsed laser," Materials & Design, vol. 31, no. 1, pp. 458-465, 2010. DOI: http://doi.org/10.1016/j.matdes.2009.05.046.
[23]        Z. Zhao, S. Janasekaran, G. T. Fong, W. Tayier, and N. Zhang, "Direct spot-welding of zirconia ceramic to Ti-6Al-4V alloy for ultrahigh strength joint using pulsed Nd: YAG laser," Ceramics International, 2025.
[24]        P. Thejasree and P. Krishnamachary, "Effect of weld speed on joint quality of Nd: YAG laser welded inconel 718 alloy weldments," SAE Technical Paper, 0148-7191, 2021. DOI: http://doi.org/10.4271/2021-28-0263.
[25]        R. Palanivel, "Effect of laser power on microstructure and mechanical properties of Nd: YAG laser welding of titanium tubes," Journal of Central South University, vol. 30, no. 4, pp. 1064-1074, 2023. DOI: http://doi.org/10.1007/s11771-023-5292-x.
[26]        M. Hadavi, H. Rostami, S. Nickabadi, E. Rostami, and H. Moradalian, "Investigation of laser factors influence on strength of laser spot welding of 316 stainless steel using the designing experiments method," Scientific Reports, vol. 15, no. 1, p. 21979, 2025. DOI: http://doi.org/s41598-025-08382-8.
[27]        Y. Jiang, "The Influence of Welding Speed on the Properties of Dual-Phase Steel Welded Joints," International Core Journal of Engineering, vol. 11, no. 4, pp. 405-412, 2025. DOI: http://doi.org/P20190813001-N202504030004-00048.
[28]        M. Taheri, A. Halvaee, S. Kashani-Bozorg, and M. Paidar, "Analysis of cracks in the pulsed Nd: YAG laser welded joint of nickel-based superalloy," Iranian Journal of Materials Forming, vol. 7, no. 1, pp. 54-69, 2020. DOI: http://doi.org/5741_76e47d867256aeaae12760fd2aa3fb6a.pdf.
[29]        M. Taheri, A. Halvaee, and S. F. Kashani-Bozorg, "Hot cracking of GTD-111 nickel-based superalloy welded by pulsed Nd: YAG laser," Metallography, Microstructure, and Analysis, vol. 9, pp. 16-32, 2020. DOI: http://doi.org/10.1007/s13632-019-00602-8.
[30]        G. Zhang, C. Xiao, and M. Taheri, "Effect of Nd: YAG pulsed laser welding process on the liquation and strain-age cracking in GTD-111 superalloy," Journal of Manufacturing Processes, vol. 52, pp. 66-78, 2020. DOI: http://doi.org/pii/S152661252030058X.
[31]        X. Zhang et al., "Effect of Welding Parameters on the Microstructure and Mechanical Properties of AZ31B Magnesium Alloy in Pulsed Laser Helical Welding," Materials Today Communications, p. 113077, 2025. DOI: http://doi.org/S2352492825015892.
[32]        "ASTM E384-17, “Standard Test Method for Microindentation Hardness of Materials, ," 2022.
[33]        "ASTM E8/E8M-21, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International,," 2021.
[34]        "ASTM E3205-20, “Standard Test Method for Small Punch Testing of Metallic Materials,” ASTM International, ," 2020, doi: http://doi.org/10.1520/E3205-20.
[35]        P. S. Ghosh et al., "Prediction of transient temperature distributions for laser welding of dissimilar metals," Applied Sciences, vol. 11, no. 13, p. 5829, 2021. DOI: http://doi.org/10.3390/app11135829.
[36]        Z. Jin, X. Kong, L. Ma, J. Dong, and X. Li, "Prediction of primary dendrite arm spacing of the inconel 718 deposition layer by laser cladding based on a multi-scale simulation," Materials, vol. 16, no. 9, p. 3479, 2023. DOI: http://doi.org/10.3390/ma16093479.
[37]        B. Fotovvati, S. F. Wayne, G. Lewis, and E. Asadi, "A Review on Melt‐Pool Characteristics in Laser Welding of Metals," Advances in Materials Science and Engineering, vol. 2018, no. 1, p. 4920718, 2018. DOI: http://doi.org/10.1155/2018/4920718.
[38]        D. Chai, D. Wu, G. Ma, S. Zhou, Z. Jin, and D. Wu, "The effects of pulse parameters on weld geometry and microstructure of a pulsed laser welding Ni-base alloy thin sheet with filler wire," Metals, vol. 6, no. 10, p. 237, 2016. DOI: http://doi.org/10.3390/met6100237.
[39]        M. Rezayat et al., "Effect of lateral laser-cladding process on the corrosion performance of Inconel 625," Metals, vol. 13, no. 2, p. 367, 2023. DOI: http://doi.org/10.3390/met13020367.
[40]        H. Hekmatjou and H. Naffakh-Moosavy, "Hot cracking in pulsed Nd: YAG laser welding of AA5456," Optics & Laser Technology, vol. 103, pp. 22-32, 2018. DOI: http://doi.org/S0030399217313117.
[41]        T. Azimzadegan and S. A. A. A. Mousavi, "Investigation of the occurrence of hot cracking in pulsed Nd-YAG laser welding of Hastelloy-X by numerical and microstructure studies," Journal of Manufacturing Processes, vol. 44, pp. 226-240, 2019. DOI: http://doi.org/10.1016/j.jmapro.2019.06.005.
[42]        W. D. Callister Jr and D. G. Rethwisch, Materials science and engineering: an introduction. John wiley & sons, 2020.
[43]        M. Montazeri, F. M. Ghaini, and O. Ojo, "Heat input and the liquation cracking of laser welded IN738LC superalloy," Weld. J, vol. 92, no. 9, pp. 258s-264s, 2013.
[44]        B. N. Coelho, M. S. F. d. Lima, S. M. d. Carvalho, and A. R. d. Costa, "A comparative study of the heat input during laser welding of aeronautical aluminum alloy AA6013-T4," Journal of Aerospace Technology and Management, vol. 10, p. e2918, 2018. DOI: http://doi.org/10.5028/jatm.v10.925.
[45]        A. T. Egbewande, R. Buckson, and O. A. Ojo, "Analysis of laser beam weldability of Inconel 738 superalloy," Materials characterization, vol. 61, no. 5, pp. 569-574, 2010. DOI: http://doi.org/S1044580310000616.
[46]        M. B. Balajaddeh and H. Naffakh-Moosavy, "Pulsed Nd: YAG laser welding of 17-4 PH stainless steel: Microstructure, mechanical properties, and weldability investigation," Optics & Laser Technology, vol. 119, p. 105651, 2019. DOI: http://doi.org/S0030399219306759.
[47]        J. Goldak, A. Chakravarti, and M. Bibby, "A new finite element model for welding heat sources," Metallurgical transactions B, vol. 15, no. 2, pp. 299-305, 1984. DOI: http://doi.org/10.1007/BF02667333.
[48]        A. H. Jafarzadeh, M. S. Shahriari, and R. Ashiri, "Heat-induced effects and cracking susceptibility in gas tungsten arc welding of Inconel 939 superalloy using Inconel 625 filler metal," Journal of Materials Research and Technology, 2025. DOI: http://doi.org/10.1016/j.jmrt.2024.12.123.
[49]        M. Chennaiah, P. Kumar, and K. Rao, "Effect of pulsed TIG welding parameters on the microstructure and micro-hardness of AA6061 joints," J Mater Sci Eng, vol. 4, pp. 4-7, 2015. DOI: http://doi.org/10.4172/2169-0022.1000182.
[50]        L. Cao et al., "Effects of welding speed on microstructure and mechanical property of fiber laser welded dissimilar butt joints between AISI316L and EH36," Metals, vol. 7, no. 7, p. 270, 2017. DOI: http://doi.org/10.3390/met7070270.
[51]        J. Liu et al., "Influence of Welding Speed on the Microstructure and Mechanical Properties of Laser-Welded Joints in 316L Stainless Steel Sheets," Metals, vol. 15, no. 6, p. 624, 2025. DOI: http://doi.org/10.3390/met15060624.
[52]        H. Ding, J. Peng, D. Lu, X. Zhu, and Q. Zhang, "Comparison study of small punch test, hydraulic bulge test and uniaxial tensile test for typical pressure vessel CrMo steel," International Journal of Pressure Vessels and Piping, p. 105563, 2025.
[53]        C. Rodríguez, J. García Cabezas, E. Cárdenas, F. Belzunce, and C. Betegón, "Mechanical Properties Characterization of Heat-Affected Zone Using the Small Punch Test: Use of the small punch test for the mechanical characterization of small areas such as the different zones that characterize the HAZ showed promise," Welding journal, vol. 88, no. 9, 2009. DOI: http://doi.org/10.1007/s40194-009-0023-5.
[54]        T. García, C. Rodríguez, F. Belzunce, and C. Suárez, "Estimation of the mechanical properties of metallic materials by means of the small punch test," Journal of alloys and compounds, vol. 582, pp. 708-717, 2014. DOI: http://doi.org/10.1016/j.jallcom.2013.08.030.
[55]        K. B. Yoon, H. S. Yun, H. Kwon, K.-O. Bae, and S. H. Nahm, "Impact of hydrogen-assisted cracking on the mechanical properties of 316L stainless steel produced by selective laser melting using an in-situ small punch test," Materials Science and Engineering: A, vol. 940, p. 148557, 2025. DOI: http://doi.org/10.1016/j.msea.2024.147557.
[56]        A. Egbewande, H. Zhang, R. Sidhu, and O. Ojo, "Improvement in laser weldability of INCONEL 738 superalloy through microstructural modification," Metallurgical and Materials Transactions A, vol. 40, no. 11, pp. 2694-2704, 2009. DOI: http://doi.org/10.1007/s11661-009-0001-z.
[57]        I. Konovalenko, P. Maruschak, J. Brezinová, and J. Brezina, "Morphological characteristics of dimples of ductile fracture of VT23M titanium alloy and identification of dimples on fractograms of different scale," Materials, vol. 12, no. 13, p. 2051, 2019. DOI: http://doi.org/10.3390/ma12132051.
[58]        M. G. Talei and M. Ghoreishi, "Microstructure and mechanical properties of laser weld of selective laser melted IN625 superalloy," Journal of Materials Research and Technology, 2025.
[59]        J. Xu, Y. Ding, Y. Gao, H. Wang, Y. Hu, and D. Zhang, "Grain refinement and crack inhibition of hard-to-weld Inconel 738 alloy by altering the scanning strategy during selective laser melting," Materials & Design, vol. 209, p. 109940, 2021. DOI: http://doi.org/10.1016/j.matdes.2021.109940.
[60]        Z. Wan, "Effect of porosity on the Tensile and Fatigue Behaviour of Inconel 738 Manufactured Through Laser Powder Bed Fusion," University of Sheffield, 2025.