[1] Adkine, A. S., & Biradar, S. K. (2025, February). A review of the effects of resistance spot welding on metallurgical and mechanical characteristics. Welding International, 39(2), 52–65. doi: 10.1080/09507116.2024.2419551
[2] Ibragimovich, J. A. (2025, July). Welding shops in automobile production UZ AUTO: Review, technologies, challenges and prospects. Modern American Journal of Engineering, Technology, and Innovation, 1(6), 309–314.
[3] Zhao, E., et al. (2025, September). Mechanical property curve of resistance spot welding for on-line monitoring of the welding quality. Journal of Manufacturing Processes, 150, 539–554. doi: 10.1016/j.jmapro.2025.06.061
[4] Chuenmee, N., et al. (2025, March). Machine learning for predicting resistance spot weld quality in automotive manufacturing. Results in Engineering, 25, 103570. doi: 10.1016/j.rineng.2024.103570
[5] Alaa, E., Farhan, F., & Haluk, M. (2024). Enhancing welding efficiency and reliability in unstructured environments: A computational analysis of spot-welded steel sheet connections. Journal of Electrical Systems, 20(6s), 2363–2370.
[6] Saini, A., & Rehalia, V. (2023). Assembly of portable spot-welding machine. International Journal for Research in Applied Science & Engineering Technology (IJRASET). doi: 10.22214/ijraset.2023.55640
[7] Zakharova, I. (2024). Welding processes in the restoration of industrial and energy facilities. Machinery & Energetics, 15(1). doi: 10.31548/machinery/1.2024.56
[8] Kapil, A., Vivek, V. A., & Daehn, G. (2025, June). Role of zinc coating on joint properties in impact spot welded Al 6111 aluminum alloy to galvanized high-strength low-alloy steel. Journal of Advanced Joining Processes, 11, 100276. doi: 10.1016/j.jajp.2024.100276
[9] Chaouki, A., et al. (2025, March). The effect of zinc bath formulation on the corrosion resistance of galvanized steel: A short review. ACS Omega, 10(10), 9809–9823. https://doi.org/10.1021/acsomega.4c08303
[10] Zhao, D., et al. (2022, December). Correlating electrode degradation with weldability of galvanized BH 220 steel during the electrode failure process of resistance spot welding. Crystals, 13(1), 39. doi: /10.3390/cryst13010039
[11] Almeida, I. L., et al. (2023, February). Numerical and experimental analysis of SAE 1010 thin steel sheets formability with and without galvanizing (GI-85). Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(2), 101. doi:10.1007/s40430-022-03977-y
[12] Thakur, A. G., & Nandedkar, V. M. (2014). Optimization of the resistance spot welding process of galvanized steel sheet using the Taguchi method. Arabian Journal for Science and Engineering, 39(2), 1171-1176. doi: 10.1007/s13369-013-0634-x
[13] Kodama, S., Ishida, Y., Asai, K., Mizumoto, M., Namekata, T., & Nagasaki, H. (2010). Development of stainless steel welding wire for galvanized steel sheets. Welding in the World, 54(1), R42-R48. doi: 10.1007/bf03263483
[14] Hamidinejad, S. M., Kolahan, F., & Kokabi, A. H. (2012). The modeling and process analysis of resistance spot welding on galvanized steel sheets used in car body manufacturing. Materials & Design, 34, 759-767. doi: 10.1016/j.matdes.2011.06.064
[15] Becheikh, N., & Tashkandi, M. A. (2025). Continuous Drive Friction Welding of Graphene-Reinforced AA6061 Alloy: Innovative Approach to Enhance Mechanical and Thermal Properties. Journal of Materials Engineering and Performance, 34(8), 6951-6962. doi: 10.1007/s11665-024-09650-w
[16] Ponnusamy, V., Muthaiyan, R., Subramanian, S., & Govindasamy, R. (2025). Silicon carbide nanoparticle-enabled strengthening of aluminum and copper resistance spot welds. Materials Science, 31(2), 171-176. doi: 10.5755/j02.ms.38335
[17] Habba, M. I. A., Ahmed, M. M. Z., Fouad, R. A., & Barakat, W. S. (2025). Friction stir welding of AA6082-T6 assisted with a novel encapsulated alumina interlayer: surface morphology, tribology, and topographic analysis. The International Journal of Advanced Manufacturing Technology, 139(5), 2823-2845. doi: 10.1007/s00170-025-16063-z
[18] Foong, P. Y., Voon, C. H., Lim, B. Y., Teh, P. L., Yeoh, C. K., Parmin, N. A., ... & Perumal, V. (2025). Microwave Welding of Polypropylene Using SiC Nanowires as Susceptors: Effect of Silane Modification on Joint Performance. Journal of Materials Engineering and Performance, 1-13. doi:10.1007/s11665-025-11477-y
[19] Sabry, I., & El-Deeb, M. S. (2025). Enhanced structural integrity and tribological performance of Al6061–Al6082 alloys reinforced with TiB2 and Al2O3 via friction stir welding. The International Journal of Advanced Manufacturing Technology, 1-18. doi: 10.1007/s00170-025-15706-5
[20] Becheikh, N., & Tashkandi, M. A. (2025). Continuous Drive Friction Welding of Graphene-Reinforced AA6061 Alloy: Innovative Approach to Enhance Mechanical and Thermal Properties. Journal of Materials Engineering and Performance, 34(8), 6951-6962. doi:10.1007/s11665-024-09650-w
[21] Chen, X., Saada, M. B., Lavisse, B., & Ammar, A. (2025). Recent advances in the remelting process for recycling aluminium alloy chips: a critical review. International Journal of Material Forming, 18(2), 42. doi: 10.1007/s12289-025-01904-9
[22] Alavizadeh, S. A. R., Shahbaz, M., Kavanlouei, M., & Kim, S. S. (2025). The effect of mechanical milling for enhanced recycling Ti6Al4V powder from machining chips. Scientific Reports, 15(1), 444. doi: 10.1038/s41598-024-84913-z
[23] Attari, K., et al. (2025, June). Applications of graphene, graphene oxide, and reduced graphene oxide on cotton fabric. Cellulose, 1–45. doi: 10.1007/s10570-025-06600-0
[24] Khosravi, M., et al. (2020). Effect of graphene oxide and reduced graphene oxide nanosheets on the microstructure and mechanical properties of mild steel jointing by flux-cored arc welding. International Journal on Minerals, Metallurgy, and Materials, 27, 505–514. doi: 10.1007/s12613-020-1966-7
[25] Balakrishnan, K. S., Samal, M. K., Parashar, J., Tiwari, G. P., & Anatharaman, S. (2014). Suitability of miniature tensile specimens for estimating the mechanical property data of pressure tubes: an assessment. Transactions of the Indian Institute of Metals, 67(1), 47-55. doi:10.1007/s12666-013-0316-0
[26] Zorlu, R., et al. (2024, August). Development of a novel hydrothermal process for surface modification of galvanized steel, characterization, and photocatalytic application. Surfaces and Interfaces, 51, 104780. doi:10.1016/j.surfin.2024.104780
[27] Wang, J., et al. (2024, October). A comprehensive review of metal laser hardening: Mechanism, process, and applications. The International Journal of Advanced Manufacturing Technology, 134(11), 5087–5115. doi: 10.1007/s00170-024-14463-1
[28] Bao, F., et al. (2024). Interface-reinforced ceramic coatings via Type-B2 discharge in micro-arc oxidation: A dual-stage strategy for enhancing wear-corrosion resistance of bearing steel. SSRN Electronic Journal.
[29] Li, L., et al. (2025, May). Enhancing impact toughness in 904L stainless steel welded joints using ultrasound-assisted laser welding without sacrificing strength and ductility. Journal of Materials Research and Technology, 36, 4476–4489. doi: 10.1016/j.jmrt.2025.04.112
[30] Chege, D. W. (2024). Effect of thermal insulation and welding parameters on residual stresses of welded joints (Ph.D. dissertation). College of Engineering and Technology (COETEC), JKUAT.
[31] Cruz, B. D., et al. (2024, August). Polyethylene of raised temperature resistance (PE-RT) nanocomposites reinforced with graphene oxide for application in flexible pipelines. Materials Research, 27, e20240124. doi: 10.1590/1980-5373-mr-2024-0124
[32] Liu, J., et al. (2024, April). Prediction and optimization method for welding quality of components in ship construction. Scientific Reports, 14(1), 9353. doi:10.1038/s41598-024-59490-w
[33] Zhang, Q., et al. (2025, March). Advances and challenges in interference-fit technology for enhancing the mechanical performance of joints. Journal of Materials Engineering and Performance, 34(5), 3585–3607. doi: 10.1007/s11665-024-10418-5
[34] Aghajani, H., Bahrami, M., & Pouranvari, M. (2024, May). Enhancing load-bearing capacity of martensitic stainless steel resistance spot welds: Microstructural vs. geometrical approaches. Materials Science and Engineering: A, 901, 146508. doi: 10.1016/j.msea.2024.146508
[35] Hu, X. Z., & Wittmann, F. H. (1992). Fracture energy and fracture process zone. Materials and Structures, 25(6), 319-326. https://doi.org/10.1007/bf02472590
[36] Sedehi, S. M. R., Khosravi, M., & Yaghoubinezhad, Y. (2021). Mechanical properties and microstructures of reduced graphene oxide reinforced titanium matrix composites produced by spark plasma sintering and simple shear extrusion. Ceramics International, 47(23), 33180-33190. doi:10.1016/j.ceramint.2021.08.219
[37] Karmakar, S. (2024, June). Impedance spectroscopy for electroceramics and electrochemical systems. arXiv preprint arXiv:2406.15467. doi: 10.37256/aecm.6120255567
[38] Zhao, Y., et al. (2024, December). Failure mechanisms of hybrid metal–composite joints with different protrusion densities under a tensile load. Mechanics of Advanced Materials and Structures, 31(24), 6150–6165. doi:10.1080/15376494.2023.2226129
[39] Kollabathini, S. S., Dora, S. P., & Chintada, S. (2025, January). Corrosion behaviour of advanced composites containing surface modified SiC as reinforcement. Journal of Alloys and Compounds, 1010, 177423. doi: 10.1016/j.jallcom.2024.177423
[40] Volchkov, S. O., et al. (2021, October). Magnetoimpedance of CoFeCrSiB ribbon-based sensitive element with FeNi covering: Experiment and modeling. Sensors, 21(20), 6728. doi: 10.3390/s21206728
[41] Ma, Z., et al. (2025, March). A novel Ta/TaN/TaAlN nanocrystalline coating on metal bipolar plates with excellent corrosion resistance. Journal of Power Sources, 632, 236307. doi: 10.1016/j.jpowsour.2025.236307
[42] Yang, G., et al. (2024, April). Effect of chloride salt types on corrosion resistance of reinforcing steel in cement mortar mixed with DNA primer inhibitor. Cement and Concrete Composites, 148, 105454. doi: 10.1016/j.cemconcomp.2024.105454
[43] Thangamuthu, M., et al. (2024). From scrap metal to highly efficient electrodes: Harnessing the nanotextured surface of swarf for effective utilization of Pt and Co for hydrogen production. Journal of Materials Chemistry A, 12(25), 15137–15144. doi: 10.1039/d4ta00711e
[44] Shingte, S. R., et al. (2025, January). The power trio: CoS–CoFe₂O₄–rGO ternary composite to enhance energy density of all-solid-state asymmetric supercapacitors. Journal of Energy Storage, 106, 114842. doi: 10.1016/j.est.2024.114842
[45] R.F. Albers, R.A. Bini, J.B. Souza Jr., D.T. Machado, L.C. Varanda, A general one-pot synthetic strategy to reduced graphene oxide (rGO) and rGO-nanoparticle hybrid materials, Carbon 143 (2018) 73–84. doi: 10.1016/j.carbon.2018.10.087
[46] V. Mišković-Stanković, I. Jevremović, I. Jung, K. Rhee, Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution, Carbon 75 (2014) 335–344. doi: 10.1016/j.carbon.2014.04.012
[47] J. Quezada-Rentería, L. Cházaro-Ruiz, J. Rangel-Mendez, Synthesis of reduced graphene oxide (rGO) films onto carbon steel by cathodic electrophoretic deposi- tion: anticorrosive coating, Carbon 122 (2017) 266–275. doi: 10.1016/j.carbon.2017.06.074